An Autonomous Institute from AY 2024-25 affiliated to Savitribai Phule Pune University

Curriculum Structure and Syllabus of First Year Engineering from AY 2024-25

National Education Policy (NEP) based Curriculum

R3: 10 September 2024

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Preface

D Y Patil College of Engineering, Akurdi, Pune (DYPCOE) has been recognized for providing quality education in Maharashtra for the past 40 years. With a commitment to academic excellence and a vision for the future, DYPCOE is now boarding a new journey towards Autonomy, in line with the latest educational reforms. The Institute is dedicated to the effective implementation of the New Education Policy (NEP) 2020, as per the guidelines by the Government of Maharashtra. This initiative is aimed at fostering the holistic development of our students, ensuring they are well-equipped to meet the challenges of the 21st century.

The present syllabus details the first-year engineering (FY) syllabus, meticulously designed to align with the NEP 2020 and effective from the academic year 2024-25. The curriculum is structured to provide a robust foundation through Basic Science Courses and Engineering Science Courses. It also integrates Vocational and Skill Enhancement Courses, Ability Enhancement Courses, the Indian Knowledge System, and co-curricular Liberal Learning courses. This comprehensive approach aims to cultivate well-rounded engineers who are adaptable to Internationalization.

One of the key highlights of this syllabus is its emphasis on Experiential Learning and handson experience. By integrating theoretical knowledge with practical laboratory sessions, we aim to enhance the learning process and foster a deeper understanding of core concepts. Additionally, the curriculum promotes research and innovation by encouraging students to engage in project-based learning.

The development of this curriculum has been a collaborative effort, and we owe a debt of gratitude to all those who have contributed to its creation. Our sincere thanks go to the Management, Steering Committee Members, Heads of Departments, and the Board of Studies chairpersons and members for their invaluable input and dedication. Their collective expertise and commitment have been instrumental in shaping this curriculum.

We are confident that this new curriculum will pave the way for our students to achieve academic excellence and holistic development, preparing them to thrive in an ever-evolving global landscape.

Dr. Mrs. P. Malathi **Principal**

Programs Offered in Bachelor of Technology (B Tech)

- 1. Artificial Intelligence and Data Science
- 2. Civil Engineering
- 3. Computer Engineering
- 4. Electronics and Telecommunication Engineering
- 5. Information Technology
- 6. Instrumentation and Control Engineering
- 7. Mechanical Engineering
- 8. Robotics and Automation

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Abbreviations and Definitions

- **NEP**: National Education Policy
- **PEO:** Program Educational Objectives
- **PO**: Program Outcomes
- PSO: Program Specific Outcomes
- CO: Course Outcomes
- **BSC**: Basic Science Courses
- **ESC**: Engineering Science Courses
- VSEC: Vocational and Skill Enhancement Courses
- AEC: Ability Enhancement Courses
- **CC**: Co-Curricular Courses
- IKS: Indian Knowledge System
- HSSM: Humanities Social Science and Management
- PCC: Program Core Course
- CCA: Continuous Comprehensive Assessment
- **ESE**: End Sem Examination **Cr**: Credits **L**: Lecture **T**: Tutorial
- P: Practical
- FY: First Year SY: Second Year TY: Third Year BY: Final Year
- Group A: Computer, IT and AIDSGroup B: ETC, Instrumentation and Robotics and Automation,Group C: Civil and Mechanical
- **Group I**: Civil, Mech, Robotics and Automation, Instrumentation **Group II**: Computer, IT, AIDS, ETC,
- **Cycle I**: Computer, IT and AIDS **Cycle II**: Civil, Mech, Robotics and Automation, ETC, Instrumentation

Index

Sr	Description						
INO		INO					
1	Preface	i					
2	Programs Offered in Bachelor of Technology (B Tech)	ii					
3	Abbreviations and Definitions	iii					
4	Index	iv					
5	Curriculum Structure Semester I	v					
6	Curriculum Structure Semester II	vi					

Detailed Syllabus

Sr No	Course Code	Course Title					
			No				
1.	BSC2401L01	Engineering Physics (Group A)	1				
2.	BSC2401L02	Engineering Physics (Group B)	4				
3.	BSC2401L03	Engineering Physics (Group C)	7				
4.	BSC2401P07	Engineering Physics Lab (Group A, B and C)	10				
5.	BSC2401L09	Linear Algebra and Differential Calculus (Group A)	12				
6.	BSC2401L10	Linear Algebra & Differential Calculus (Group B)	14				
7.	BSC2401L11	Linear Algebra & Differential Calculus (Group C)	16				
8.	ESC2401L01	Applied Mechanics (Group I)	18				
9.	ESC2401L02	Applied Mechanics (Group II)	21				
10.	ESC2401P04	Applied Mechanics Lab (Group I and II)	24				
11.	ESC2401L07	Engineering Graphics and Computer Aided Drafting	26				
12.	ESC2401P09	Engineering Graphics and Computer Aided Drafting Lab	28				
13.	VSC2401P01	Experiential Learning I	30				
14.	HSM2401P01	Professional and Technical Communication	32				
15.	LLC2401P01	Liberal Learning - I	35				
16.	BSC2402L04	Engineering Chemistry (Group A)	37				
17.	BSC2402L05	Engineering Chemistry (Group B)	40				
18.	BSC2402L06	Engineering Chemistry (Group C)	43				
19.	BSC2402P08	Engineering Chemistry Lab (Group A, B and C)	46				
20.	BSC2402L09	Differential Equation & Integral Calculus (Group A)	48				
21.	BSC2402L10	Differential Equation & Integral Calculus (Group B)	50				
22.	BSC2402L11	Differential Equation & Integral Calculus (Group C)	52				
23.	ESC2401L03	Electrical and Electronics Engineering	54				
24.	ESC2401P06	Electrical and Electronics Engineering Lab	57				
25.	ESC2401L08	Programming and Problem Solving	59				
26.	ESC2401P10	Programming and Problem Solving Lab	61				
27.	VSC2402P02	Experiential Learning II	63				
28.	HSM2402L02	Science and Engineering of Ancient India	65				
29.	LLC2402P02	Liberal Learning II	68				
30.	AID2402L01	Python for Data Science	70				
31.	CVE2402101	Elements in Infra-Structure Engineering	72				
32.	CPE2402L01	Object Oriented Programming, with C++	74				
33.	ETE2402L01	Semiconductor Devices and Sensors	76				
34.	INT2402L01	Fundamentals of Java Programming	78				
35.	ICE2402L01	Measurements in Instrumentation	80				
36.	RNA2402L02	Elements of Mechanical Engineering	82				
37.	MNE2401T03	Basic Mechanical Engineering	84				

First Year Engineering FY B Tech Semester I														
			,	Teachir	ng Sche	me		Eval	uatio	n Sch	eme			
	Course						Theory Marks			Pra Ma	ctical arks			
Course Code	Туре	Course		T (Hr)	P (Hr)	Cr	Exam	Max %	N Ma f Pa	fin arks or ssin g	Max %	Min Marks for Passing		
BSC2401L01-03/ BSC2401L04-06	BSC 1/2	Engineering Physics/Chemistry	3	0	0	3	CCA ESE	50 50	20 20	40				
BSC2401P07/ BSC2401P08	BSC 1/2	Engineering Physics/Chemistry Lab	0	0	2	1	CCA				100	40		
							CCA	50	20	40				
BSC2401L09-11	BSC 3	Linear Algebra and Differential Calculus	3	1	0	4	ESE	50	20	40				
	ESC 1/2			Applied					CCA	50	20			
ESC2401L01-02/ ESC2401L03		Mechanics/Electrical and Electronics Engineering	3	0	0	3	ESE	50	20	40				
ESC2401P04-05/ ESC2401L06	ESC 1/2	Applied Mechanics/Electrical and Electronics Engineering Lab	0	0	2	1	CCA				100	40		
		Engineering Graphics					CCA	50	20					
ESC2401L07/ ESC2401L08	ESC 3/4	and Computer Aided Drafting /Programming and Problem Solving	2	0	0	2	ESE	50	20	40				
ESC2401P09/ ESC2401P10	ESC 3/4	Engineering Graphics and Computer Aided Drafting Lab/ Programming and Problem Solving Lab	0	0	2	1	CCA				100	40		
VSC2401P01	VSE C1	Experiential Learning I	0	1	2	2	CCA				100	40		
HSM2401P01	AEC 1	Professional and Technical Communication	0	1	2	2	CCA				100	40		
LLC2401P01	CC1	Liberal Learning I/ Liberal Learning II	0	1	2	2	CCA				100	40		
		Total Credits	11	4	12	21								
					Hrs									
			The	ory	15				<u> </u>					
			Pra	ct/Lab	12									
			Total		27									

	First Year Engineering FY B Tech Semester II											
			Т	eachin	g Sche	me		Eva	luatio	on Sch	neme	
Course Code	Course	Course	L	Т	Р	Cr		Theo	ry Ma	arks	Pra Ma	ctical arks
	Туре	Course	(Hr)	(Hr)	(Hr)		Exam	Max %	Min Marks for Passing		Max %	Min Marks for Passin g
BSC2402L01-03/ BSC2402L04-06	BSC1/2	Engineering Physics/Chemistry	3	0	0	3	CCA ESE	50 50	20 20	40		
BSC2402P07/ BSC2402P08	BSC1/2	Engineering Physics/Chemistry Lab	0	0	2	1	CCA				100	40
							CCA	50	20			
BSC2402L09-11	BSC4	Differential Equation and Integral Calculus	3	1	0	4	ESE	50	20	40		
		Applied					CCA	50	20			
ESC2402L01-02/ ESC2402L03	ESC1/2	Mechanics/Electrical and Electronics Engineering	3	0	0	3	ESE	50	20	40		
ESC2402P04-05/ ESC2402L06	ESC1/2	Applied Mechanics/Electrical and Electronics Engineering Lab	0	0	2	1	CCA				100	40
		Engineering Graphics					CCA	50	20			
ESC2402L07/ ESC2402L08	ESC3/4	Drafting /Programming and Problem Solving	2	0	0	2	ESE	50	20	40		
ESC2402P09/ ESC2402P10	ESC3/4	Engineering Graphics and Computer Aided Drafting /Programming and Problem Solving Lab	0	0	2	1	CCA				100	40
							CCA	50	20			
XXX2402L01	PCC1	Program Specific Core Course	2	0	0	2	ESE	50	20	40		
VSC2402P02	VSEC2	Experiential Learning II	0	1	2	2	CCA				100	40
HSM2402L02	IKS	Science and Engineering of Ancient India	2	0	0	2	CCA				100	40
LLC2402P02	CC2	Liberal Learning I/ Liberal Learning II	0	1	2	2	CCA				100	40
		Total Credits	15 3		10	23				1		
					Hrs							
			The	ory	18							
			Pra	ct/Lab	10							
			1018	11	2ð		1					

First Year (FY) B Tech Semester I & II Course Code: BSC2401L01, Course Title: Engineering Physics (Group A) Category: Basic Science Course

		Tea	aching Sche	me	Evaluation Scheme			
т	т	р	Cr	Evam	Theory % Marks		arks	
L	I	r	Cr	Exam	Max	Min fo	or Pass	
3	0	0	3	CCA	50	20	40	
39	0	0		ESE	50	20	40	

Prerequisites:

Properties of light, wave-particle duality, semiconductors

Course Objective

1. Engineering being a science of measurement, Physics plays basic role in understanding the Principles behind engineering systems and helps to yield more efficient and effective designs for sustainable developments.

- 2. Physics is called natural science since it has systematic explanation behind everything that happens in the universe. Hence it fosters temperament of searching cause effect relationship.
- 3. Proposed curriculum is the show case of combination of Photonics, Optoelectronics, solid state technology, which are closer to the industrial world.
- 4. The focus is on to inculcate the scientific temperament in the minds of budding engineers for their 360-degree development.

 Course Outcomes: After successful completion of the course the student will be able to

 CO1
 Apply the properties of laser in various applications like material working and holography.

 CO2
 Correlate the principles in quantum mechanics with applications like dynamics of electrons and quantum computing.

 CO3
 Estimate electric load for fixing solar PV systems for the domestic application.

 CO4
 Compare the use of normal conductor and Superconductor for SQUID and MAGLEV Train.

 CO5
 Select optic fibre for intended communication system.

Syllabus

Unit I	PHOTONICS	8 hrs					
Basic Mechanisms- absorption, emission, inverted population, metastable state,							
Constructi	on and working of laser cavity, CO2 Laser, He-Ne Laser and Semiconduc	tor Laser					
(Homo-jur	action and Heterojunction).						
Applications of Laser: Material working, Laser Distance Meter (LDM), Holography							
Unit II	INTRODUCTION TO QUANTUM THEORY	8 hrs					
Introductio	on to Quantum Mechanics, De-Broglie hypothesis, phase and group	velocity.					
Heisenberg	g's uncertainty principle with illustration, Wave function and its	physical					
significanc	significance. Schrodinger wave equations, Illustration of particle in a rigid box using						
Schrodinger time independent equation.							
Applications of Quantum Theory: Tunneling effect and its illustration with examples of Alpha							
particle de	cay, Tunnel diode, Scanning Tunneling Microscope.						

Unit II	SOLAR CELL DEVICES & SOLAR THERMAL	8 hrs
D · · 1	TECHNOLOGY	6.0.1
Principl Calla L	e, Construction, working of Solar Cells, I-V characteristics and Fill Factor	of Solar
Annlie	tion: Basic PV System and its specifications (Load calculation, Backup time	Battery
capacity	inverter capacity and Solar panel capacity).	, Dattery
Principl	e of working of solar thermal system and its specifications	
Applica	tion: Domestic Solar thermal water heater.	
Unit IV	SUPERCONDUCTIVITY	8 hrs
Introduc	tion to superconductivity, Properties of superconductors: zero electrical resist	stance,
critical	nagnetic field, persistent current, Meissner effect, Type I and Type II	
superco	nductors, AC/DC Josephson effect, Construction and working of Supercondu	cting
Quantu	n Interface Device (SQUID).	
Unit V	FIBER OPTICS	7 hrs
		7 11 5
Types of	construction and Working of Optic Fiber, Numerical Aperture, attenuation and i	ts causes,
Referen	ce Books	
1. 1	Non-destructive tests and evaluation of Materials 2 nd Edition, J. Prasad, C.G.	
-	Krishnadas Nair, Mc Graw Hill (2017)	
2.	enkin and White, Fundamentals of Optics, 4th Edition, Tata McGraw Hill (2017)	
3.	Solar Photovoltaic Technology and Systems: Manual for Technicians, Trainer	rs and
	Engineers (2013)	
4.	Solar Thermal Energy, A. Sreekumar, New Age Publications(2020)	
5.	Laser and Non-Linear Optics, B.B. Loud (Oscar publication)(2022)	
6.	Engineering Physics R. K. Gaur, Dhanpatray and Sons Publication (2012)	
Text Bo	oks	
1	A Text book of sound- N Subhrannyam and Brijjlal (2018)	
2.	Engineering Physics, Avadhanulu, Kshirsagar, S. Chand Publications	
3.	A textbook of optics – N Subrahmanyam and BriLal, S. Chand Publications	
4.	Engineering Physics, Gaur, Gupta, Dhanpat Rai and Sons Publication	

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Tes	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3										
CO3	3	3										
CO4	3	3					2					
CO5	3	3										

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II Course Code: BSC2401L02, Course Title: Engineering Physics (Group B), Category: Basic Science Course

	Teachi	Evaluation Scheme					
L			Cr	Fyam	Theory % Marks		
(Hr)	(Hr)	(Hr)	CI	L'Aam	Max %	Min ma Pa	arks for assing
3	0	0	3	CCA	50	20	10
39	0	0	Total: 39	ESE	50	20	40

Prerequisites: Properties of light, wave-particle duality, semiconductors

Course Objective:

- 1. Engineering being a science of measurement, Physics plays basic role in understanding the Principles behind engineering systems and helps to yield more efficient and effective designs for sustainable developments.
- 2. Physics is called natural science since it has systematic explanation behind everything that happens in the universe. Hence, it fosters temperament of searching cause effect relationship.
- 3. Proposed curriculum is the showcase of combination of Photonics, Optoelectronics, solidstate technology, which are closer to the industrial world.
- 4. The focus is on to inculcate the scientific temperament in the minds of budding engineers for their 360-degree development.

Course Outcomes: After successful completion of the course the student will be able to

- CO1 **Apply** the properties of laser in various applications like material working and holography.
- CO2 **Correlate** the principles in quantum mechanics with applications like dynamics of electrons and quantum computing.
- CO3 Estimate electric load for fixing solar PV systems for the domestic application.

CO4 **Compare** the use of normal conductor and Superconductor for SQUID and MAGLEV Train.

CO5 Analyse the properties of nanomaterials based on characterization technique.

Syllabus

Unit I	nit I PHOTONICS						
Basic Mechanisms- absorption, emission, inverted population, metastable state,							
Constructi	Construction and working of laser cavity, CO ₂ Laser, He-Ne Laser and Semiconductor Laser						
(Homo-jur	nction and Heterojunction).						
Applicatio	ons of Laser: Material working, Laser Distance Meter (LDM), Holography	у					
Unit II	INTRODUCTION TO QUANTUM THEORY	8 hrs					
Introductio	on to Quantum Mechanics, De-Broglie hypothesis, phase and group	velocity.					
Heisenberg	g's uncertainty principle with illustration, Wave function and its	physical					

significance. Schrodinger wave equations, Illustration of particle in a rigid b	ox using
Schrödinger time independent equation.	ofAlpha
particle decay. Tunnel diode, Scanning Tunneling Microscope.	of Alpha
Unit III SOLAR CELL DEVICES & SOLAR THERMAL	8 hrs
TECHNOLOGY	
Principle, Construction, working of Solar Cells, I-V characteristics and Fill Factor	of Solar
Cells, Use of antireflection coating on solar cell to improve power output.	Dattory
capacity inverter capacity and Solar panel capacity).	e, Dattery
Principle of working of solar thermal system and its specifications	
Application: Domestic Solar thermal water heater.	
Unit IV SUPERCONDUCTIVITY	8 hrs
Introduction to superconductivity, Properties of superconductors: zero electrical resis	stance,
critical magnetic field, persistent current, Meissner effect, Type I and Type II superconductors, AC/DC Josephson effect. Construction and working of Supercondu	loting
Quantum Interface Device (SOUID)	leting
Applications of SQUID and superconductors,	
Unit V Characterizations of Thin Films	7 hrs
Purpose of characterization of material,	
Surface Characterization: Contact Angle	
Structural Characterization: A-ray diffraction (ARD) and Atomic Force Microsco	py, reharge
Electrochemical Impedance Spectroscopy.	senarge,
Reference Books	
1.Non-destructive tests and evaluation of Materials 2 nd Edition, J. Prasad, C.G.	
Krishnadas Nair, Mc Graw Hill (2017)	
2.Jenkin and White, Fundamentals of Optics, 4 th Edition, Tata McGraw Hill (201	7)
3.Solar Photovoltaic Technology and Systems: Manual for Technicians, Trainers	and
Engineers (2013)	
4.Solar Thermal Energy, A. Sreekumar, New Age Publications(2020)	
5.Laser and Non-Linear Optics, B.B. Loud (Oscar publication)(2022)	
6.Introduction to Solid State Physics, C. Kittel (Wiley and Sons)(2012)	
7.Fundamentals of Physics, Resnick and Halliday (John Wiley and Sons)(2021)	
8. Thin Film Phenomena by K L Chopra McGraw -Hill Book Company, NY 1969).
9.Nanotechnology principle and practices by Sulabha K. Kulkarni (201	
Text Books	
1. Text book of sound- N Subhrannyam and Brijjlal (2018)	
2. Engineering Physics, Avadhanulu, Kshirsagar, S. Chand Publications	
3. A textbook of optics – N Subrahmanyam and BriLal , S. Chand Publications	
4.Engineering Physics, Gaur, Gupta, Dhanpat Rai and Sons Publication	

.

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Tes	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	2										
CO3	3	3										
CO4	3	3					2					
CO5	3	3										

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II Course Code: BSC2401L03, Course Title: Engineering Physics (Group C), Category: Basic Science Course

		Tea	aching Sche	me	E	valuation Sc	heme
т	т	р	Cr	Evam	Theory % Marks		
L	I	Γ	Cr	Exam	Max	Min fo	or Pass
3	0	0	3	CCA	50	20	40
39	0	0		ESE	50	20	

Prerequisites:

Properties of light, wave-particle duality, semiconductors

Course Objective:

 Engineering being a science of measurement, Physics plays basic role in understanding the Principles behind engineering systems and helps to yield more efficient and effective designs for sustainable developments.

2. Physics is called natural science since it has systematic explanation behind everything that happens in the universe. Hence, it fosters temperament of searching cause effect relationship.

3. Proposed curriculum is the showcase of combination of Photonics, Optoelectronics, solidstate technology, which are closer to the industrial world.

4. The focus is on to inculcate the scientific temperament in the minds of budding engineers for their 360-degree development.

Course O	Dutcomes: After successful completion of the course the student will be able to
C01	Apply the properties of laser in various applications like material working and
	holography.
CO2	Correlate the principles in quantum mechanics with applications like dynamics of
	electrons and quantum computing.
CO3	Estimate electric load for fixing solar PV systems for the domestic application.
CO4	Analyze acoustical aspects of auditorium.
CO5	Evaluate disorders in the material by using NDT for testing of various materials.
0.00	
1	

Syllabus

Unit I	PHOTONICS	8 hrs						
Basic Mechanism	s- absorption, emission, inverted population, metastable state,							
Construction and	Construction and working of laser cavity, CO ₂ Laser, He-Ne Laser and Semiconductor Laser (Homo-							
junction and Hete	rojunction).							
Applications of I	Laser: Material working, Laser Distance Meter (LDM), Holography							
Unit II	INTRODUCTION TO QUANTUM THEORY	8 hrs						
Introduction to Q	uantum Mechanics, De-Broglie hypothesis, phase and group velocity. Heis	enberg's						
uncertainty princi	ple with illustration, Wave function and its physical significance. Schroding	ger wave						
equations, Illustra	tion of particle in a rigid box using Schrodinger time independent equatio	n.						
Applications of Quantum Theory: Tunneling effect and its illustration with examples of Alpha particle								
decay, Tunnel dio	de, Scanning Tunneling Microscope.							

Unit III	SOLAR CELL DEVICES & SOLAR THERMAL	8 hrs
	TECHNOLOGY	0 11 5
Principle, Constr	uction, working of Solar Cells, I-V characteristics and Fill Factor of Solar C	ells, Use
of antireflection	coating on solar cell to improve power output.	
Application: Ba	asic PV System and its specifications (Load calculation, Backup time,	Battery
capacity, inverter	r capacity and Solar panel capacity).	
Principle of work	king of solar thermal system and its specifications	
Application: Do	mestic Solar thermal water heater.	
Unit IV	Sound and Acoustics	8 hrs
Sound: Electroac	coustic Transducers, Intensity and loudness of sound, Decibels, Intensity lev	vels,
musical notes, m	usical scale.	Salina'a
formula for mass	our Area: Reverberation and time of reverberation, Absorption coefficient,	Sabine s
Application: Ac	oustic aspects of auditorium	
Unit V	NONDESTRUCTIVE TESTING OF MATERIALS	7 hrs
Purpose of Mate	erials Testing. Types of testing: DT and NDT. Classification of Non-de	structive
testing methods ((Surface and Volumetric). Merits and demerits of NDT.	Shuchie
NDT Techniques	: Penetrant testing (PT). Magnetic Particle Testing (MT). Ultrasonic Testing	ng (UT).
Eddy Current Tes	sting (ET) and Corrosion Testing.	8())
Overview of Inte	ernational Standards used in testing.	
Reference Book	S S	
7. Non-dest	ructive tests and evaluation of Materials 2nd Edition, J. Prasad, C.G. Krishn	adas
Nair, Mc	Graw Hill (2017)	
8. Jenkin and	d White, Fundamentals of Optics, 4th Edition, Tata McGraw Hill (2017)	
9. Solar Pho	otovoltaic Technology and Systems: Manual for Technicians, Trainers and	
Engineers	s(2013)	
10. Solar The	ermal Energy, A. Sreekumar, New Age Publications(2020)	
11. Laser and	Non-Linear Optics, B.B. Loud (Oscar publication)(2022)	
12. Physics fo	r Engineering (Vol 1)- P. K. Palanisany, Scitech Publications (India) Pvt Ltd(2013	8).
Т	ext Books	
5 A Text bo	ok of sound- N Subhrannyam and Brijilal (2018)	
6 Engineeri	ing Physics, Avadhanulu, Kshirsagar, S. Chand Publications	
	of opting N Subrohmonytom and Dril al. C. Chard Dublications	
/. A textboo	ok of optics – N Subranmanyam and BriLal, S. Chand Publications	
8. Engineeri	ing Physics, Gaur, Gupta, Dhanpat Rai and Sons Publication	

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3										
CO3	3	3										
CO4	3	3					2					
CO5	3	3										

3: High, 2: Moderate, 1: Low, 0: No Mapping

First Year (FY) B Tech Semester I & II Course Code: BSC2401P07, Course Title: Engineering Physics Lab (Group A, B and C), Category: Basic Science Course

	Teaching			Evalua	ation S	chen	ne		
L	т	D			Theory % Marks			Practical % Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Exam Min Max for Passing		Max	Min Marks for Passin g	
0	0	2	1	CCA				100	40
0	0	26	Total: 26	CCA	-	-	-	100	40

Prerequisites:

Properties of light, wave-particle duality, semiconductors

Course Objectives:

Being an engineering programme, in addition to cognitive skills psychomotor skills like measure, observe, operate etc. will be equally important. To cope up these skills following objectives are identified.

- 1. To set standard operating procedure to determine the respective parameters.
- 2. To analyze the changes in the calculated parameters by changing the variables.
- 3. To compare the theoretical and practically calculated values.

Course Outcomes: After successful completion of the course the student will be able to

CO1 **Compare** the theoretical and actual determined values of physical quantity

CO2 Estimate Fill Factor of Solar Cell used in PV System.

CO3 **Classify** materials for engineering applications.

Syllabus

PR1 Wavelength of Laser light

To determine wavelength of light by using diffraction pattern

PR 2 Use of LASER to study diffraction grating.

To determine grating element using laser.

PR 3 Plank's Constant

To determine Planck's constant using Light Emitting Diode

PR 4 Study of solar cell.

To determine fill factor of given solar cell

PR 5 Study of solar cell.

To study solar output power with variation in temperature.

PR 6 Study of band gap of semiconductor.

To determine the forbidden energy gap or band gap in eV for the given semiconductor.

PR 7 Hall effect experiment.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

To determine the hall coefficient, sign of majority carriers, concentration of majority carriers and mobility of majority carriers in the given semiconductors.

PR 8 Numerical Aperture

To determine Numerical Aperture of optical Fibre

PR 9 Synthesis of thin film

To synthesise thin film using Chemical Bath Deposition

PR 10 Synthesis of thin film

To synthesise thin film using Successive Ionic Layer Adsorption and Reaction (SILAR)

PR 11 Synthesis of thin film

To synthesise thin film using Electrodeposition

PR 12 Ultrasonic interferometer

To determine velocity of ultrasonic waves in liquid using ultrasonic interferometer.

PR 13 Penetrant Testing of given material surface

To visualize surface disorders by using penetrant testing (PT)

PR 14 Demonstration experiment : Rebound hammer

To assess the uniformity and quality of given concrete.

PR 15 Sound Absorption

To determine coefficient of absorption of sound for given material

Text Books

1) A textbook of Engineering Physics-Dr. M.N. Avadhanulu, Dr. P.G. Kshirsagar- Revised edition 2015, S. Chand & Company Pvt. Ltd.

2) Engineering Physics-R.K. Gaur, S. L Gupta, -Eighth revised edition 2012, Dhanpatrai Publications (P) Ltd

Reference Books

1) Lasers & nonlinear Optics-B. B. Laud-Third edition, New Age International (P) Ltd. Publishers.

2) Fundamentals of Optics- Francis A. Jenkins, Harvey E. White, Fourth edition, McGraw Hill Education (India) Pvt. Ltd.

3) Fundamentals of Physics- Resnick & Halliday (John Wiley &sons)

4) An introduction to Laser's theory and applications – Dr. M. N. Avdhanulu, Dr. P.S. Hemne– Revised edition 2017-S. Chand & Company Pvt. Ltd.

5) Introduction to solid states Physics - Charles Kittel, Eighth Edition, Wiley India Pvt Ltd.

6) Electrochemical Supercapacitors, Scientific fundamentals and Technological Applications by

B. E.Conway, Kluwer Academic/ Plenum Publishers, New York, Boston, Dordrencht, London, Moscow

Scheme for Practical Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e Assessment (CCA)	Evaluation	Involvement, Participation, and Engagement	10		
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	1	1					1			
CO2	3	3				1	1				1	
CO3	3	2						1				

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I

Course Code: BSC2401L09, Course Title: Linear Algebra and Differential Calculus (Group A), Category: Basic Science Course

	Teaching	g Scheme			Evalu	ation S	Schem	e	
L	т	P	P					Practi Ma	ical % arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Ma Ma fo Pas	lin arks or sing	Max	Min Marks for Passin g
3	1	0	4	CCA	50	20			
39	13	0	Total: 52	ESE	50	20	40	-	-

Prerequisites: Differentiation, Integration, Maxima, Minima, Determinants and Matrices. **Course Objective:** Purposes of the course are

- 1. To make the students familiarize with concepts and techniques in Calculus and Linear Algebra.
- 2. The aim is to equip them with the techniques to understand advanced level mathematics and
- 3. The aim is to use applications that would enhance analytical thinking power, useful in their disciplines

Course Outcomes: After successful completion of the course units the student will

- CO1 **Apply** the essential tool of matrices and linear algebra in a comprehensive manner for analysis of systems of linear equations applicable to engineering problems.
- CO2 **Apply** the essential tool of matrices and linear algebra in a comprehensive manner for finding linear and orthogonal transformations, Eigenvalues and Eigenvectors applicable to engineering problems.
- CO3 **Implement** Mean value theorems, expansions of function using Taylor's and Maclaurin's series useful in the analysis of engineering Problems.
- CO4 **Apply** the concept partial derivatives to find Jacobian used for functional dependence & estimating error and approximation
- CO5 **Solve** Algebraic and Transcendental equation & System of linear Equations Using numerical techniques.

Syllabus

Unit I	Elementary Linear Algebra	8 hrs					
Cramer's I	Cramer's Rule, Rank of Matrix, Systems of linear equations, Linear Dependence and						
Independe	nce, Applications to problems in Engineering						
Unit II	Advanced Linear Algebra	8 hrs					
Linear Tra	nsformation, Orthogonal Transformation, Eigenvalues and Eigenvectors of	of 2*2					
and 3*3, C	and 3*3, Cayley Hamilton Theorem, Diagonalization of matrix						
Unit III	Differential Calculus	8 hrs					
Lagrange's	s Mean Value Theorem, Rolle's Theorem, L' Hospital's Rule, Taylor's Seri	es and					
Maclaurin	's Series, Expansion of Functions						
Unit IVFunction of Several Variables & its Applications8 hrs							
Introduction to functions of several variables, Partial Derivatives, Euler's Theorem on Homogeneous							
functions, F	Partial derivative of Composite Function, Jacobians, Functional Dependence, Erro	ors and					

Approxima	tions	
Unit V	Numerical Methods	7 hrs
Numerical	Solution of System of Equation: Gauss Elimination, Jacobi & Gauss Seide	el
Method. N	umerical Solution of Algebraic and Transcendental equation: Bisection M	lethod,
Regula Fal	si Method, Newton Raphson Method	
Text Book	:	
1. Higher l	Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi), 20	19, 44 th
Edition, IS	BN-978-81-933284-9-1.	
2. Higher	Engineering Mathematics by B. V. Ramana (Tata McGraw Hill), 2019,35 ^t	h
Edition, IS	BN-978-0-07—063419-O.	
Reference	Books	
1. Engineer	ring Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.), 2022, 10 th Edition,	, ISBN-
978-81-265	5-5423-2.	
2. Advance	ed Engineering Mathematics by M. D. Greenberg (Pearson Education), 2019, 2	2 nd
Edition, IS	BN-978-81-7758-546-9.	
3. Advance	ed Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017, 7	th

Edition, ISBN-978-81-315-1752-9.

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	J T 1)	Unit Tes	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-

3: High, 2: Moderate, 1: Low, 0: No Mapping *****

First Year (FY) B Tech Semester I Course Code: BSC2401L10, Course Title: Linear Algebra & Differential Calculus (Group B), Category: Basic Science Course

	Teaching	g Scheme		Evaluation Scheme					
т	т	P			Theory	y Mar	ks	Practical % Marks	
(Hr)	(Hr)	(Hr)	(Hr) Cr		Max %	Mi Mar fo Pass	in rks r sing	Max	Min Marks for Pass ing
3	1	0	4	CCA	50	20			
39	13	0	Total: 52	ESE	50	20	40	-	-
Prerequis	ites: Differen	tiation, Integ	gration, Max	ima, Min	ima, Detei	minar	nts an	d matri	ces.
Course O	bjectives: Pu	rpose of the	course are						
 To make The aim The aim useful in th 	 To make the students familiarize with concepts and techniques in Calculus and Linear Algebra. The aim is to equip them with the techniques to understand advanced level mathematics. The aim is to Use Applications of mathematics that would enhance analytical thinking power, useful in their disciplines 								bra. er,
CO1 Aj an	pply the esser alysis of syste	ntial tool of r ems of linear	natrices and equations ap	linear alg	ebra in a c to enginee	compro ering p	ehens roble	ive ma ms.	nner for
CO2 A Ev	pply the esse aluate linear	ntial tool of and orthogo	matrices and nal transform	linear alg ations, E	gebra in a igenvalues	compi s and I	rehen Eigen	sive ma vectors	anner for
CO3 In M	plement Me aclaurin's ser	an value theo ies useful in	orems, expan the analysis	sions of f of engine	function us ering.	sing T	aylor	's and	
CO4 Ca	CO4 Calculate the derivative of functions of several variables that are essential in various branches of Engineering.								
CO5 Ex an	amine the Fo alysis of perio	ourier series odic continue	representation out and discr	on and har rete system	monic ana	alysis	for de	esign ar	nd

Unit I	Elementary Linear Algebra	8 hrs					
Cramer's Rule, Rank of Matrix, Systems of linear equations, Linear Dependence and							
Independe	nce, Applications to problems in Engineering.						
Unit II	Advanced Linear Algebra	8 hrs					
Linear Tra	nsformation, Orthogonal Transformation ,Eigenvalues and Eigenvectors o	f 2*2					
and 3*3 m	atrices Cayley Hamilton Theorem, Diagonalization of matrix						
Unit IIIDifferential Calculus8							
Lagrange'	Lagrange's Mean Value Theorem, Rolle's Theorem, L' Hospital's Rule, Taylor's Series and						
Maclaurin	's Series, Expansion of Functions						
Unit IV	Function of Several Variables & Its Application	8 hrs					
Introductio	on to functions of several variables, Partial Derivatives, Euler's Theorem or	n					
Homogene	eous functions, Partial derivative of Composite Function, Chain Rule , Tota	1					
Derivative, Jacobian, Jacobian of composite function, J and j` Functional Dependence, Errors							
and Approximations							
Unit V	Unit V Fourier Series 7 hrs						
Definition,	Dirichlet's conditions, Full range Fourier series, Half range Fourier series, Harmo	onic					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

analysis, Parseval's identity and Applications to problems in Engineering.

Text Books:

1.Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill)(2019,35th edition, ISBN-13978-0-07-063419-00)

2. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi)(2019,35th edition, ISBN-978-81-933284-9-1)

Reference Books

- 1. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.)(2022,10th ISBN-978-81-265-5423-2)
- 2. Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education)(2019-2nd, JSBN-978-81-7758-546-9)
- 3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning)(2017,7th, JSBN-978-81-315-1752-9)

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-

3: High, 2: Moderate, 1: Low, 0: No Mapping

F Y B Tech for Group C (Mech, Civil) Semester I Course Code: BSC2401L11, Course Title: Linear Algebra & Differential Calculus (Group C), Category: Basic Science Course

	Teaching		Evalu	ation	Sche	me			
T	т	D			Theory Marks			Practical % Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam Max %		Mi Mar fo Pass	in rks r sing	Max	Min Marks for Passing
3	1	0	4	CCA	50	20			
39	13	0	Total: 52	ESE	50	20	40	-	-

Prerequisites: Differentiation, Integration, Maxima, Minima, Determinants and matrices. **Course Objective: Purpose of the course are**

- 1. To make the students familiarize with concepts and techniques in Calculus and Linear Algebra.
- 2. The aim is to equip them with the techniques to understand advanced level mathematics
- The aim is to Use Applications of mathematics that would enhance analytical 3. thinking power, useful in their disciplines

Course Outcomes: After successful completion of the course, students will

- CO1 Apply the essential tool of matrices and linear algebra in a comprehensive manner for analysis of systems of linear equations applicable to engineering problems.
- CO2 Apply the essential tool of matrices and linear algebra in a comprehensive manner to evaluate linear and orthogonal transformations, Eigenvalues and Eigenvectors
- CO3 Implement Mean value theorems, expansions of function using Taylor's and Maclaurin's series useful in the analysis of engineering.
- CO4 Apply the concept partial derivatives to find Jacobian used for functional dependence & estimating error and approximation

CO5 Apply basics of complex numbers to calculate roots and logarithms and its applications

Syllabus	

Unit I	Elementary Linear Algebra	8 hrs
Cramer's R	ule, Rank of Matrix, Systems of linear equations, Linear Dependence and Indepe	ndence,
Application	s to problems in Engineering	

Unit II	Advanced Linear Algebra	8 hrs
Linear Tran	sformation, Orthogonal Transformation, Eigenvalues and Eigen Vectors of 2*2	2 and 3*3,
Cayley Han	nilton Theorem, Diagonalization of matrix	
Unit III	Differential Calculus	8 hrs

Unit III Differential Calculus Lagrange's Mean Value Theorem, Rolle's Theorem, L'Hospital's Rule, Taylor's Series and Maclaurin's Series, Expansion of Functions

Function of Several Variables & its Applications Unit IV 8 hrs Introduction to functions of several variables, Partial Derivatives, Euler's Theorem on Homogeneous functions, Partial derivative of Composite Function, Jacobians, Functional Dependence, Errors and

Approximat	tions	
Unit V	Complex Numbers	7 hrs
Argand Dia	gram, Demoivre's Theorem and its application to find roots of algebraic equation	ıs.
Logarithm of	of complex number, separation of real and imaginary parts, application to problem	ms in
Engineering		
Text Book:		
1. Higher E	Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi),2019,44 th	
Edition, ISB	N No - 978-81-933284-9-1	
2. Higher E	Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Advanced ,2019,	.35 th
Edition, ISE	3N No-13978-0-07-063419-0	
Reference	Books	

1. Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.), 2022, 10th Edition, ISBN No -978-81-265-5423-2

2.Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education), 2019,2nd Edition, ISBN No -978-81-7758-546-9

3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017,7th Edition, ISBN 13:978-81-315-1752-9, ISBN 10:81-315-1752-7

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
C01	2	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

F Y B Tech For Group C (Mech, Civil) Semester I First Year (FY) B Tech Semester I & II Course Code: ESC2401L01, Course Title: Applied Mechanics (Group I), Category: Engineering Science Course

	Teaching		Eval	uatio	n Sche	eme			
т	т	D			TI N	heory Iarks		Pra M	ctical arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	M Ma fo Pas	lin orks or sing	Max %	Min Marks for Passin g
3	0	0	3	CCA	50	20			
39	0	0	Total: 39	ESE	50	20	40	-	-

Prerequisites: 12th Physics, Mathematics

Course Objectives:

Equip students with a thorough understanding of applied mechanics principles and their practical applications, enabling them to effectively analyze and solve engineering problems involving forces, loads, and moments, and to integrate these concepts within related engineering disciplines.

Course Outcomes: After successful completion of the course units the student will

	1
CO1	Understand the basic concept of force, moment & couple to determine resultant of various force systems.
CO2	Apply conditions of Static equilibrium to free body diagram to solve engineering problem
CO2	Analyze and solve engineering problems involving friction, centroids and moments
COS	of inertia

CO4 Analyze rectilinear and curvilinear motion of particle

CO5 Apply Newton's second law, work energy and impulse momentum principles for particles

Syllabus								
Unit I	Force systems and its resultant	7 hrs						
Fundamental concept, force system, Resolution and composition of forces, Resultant of								
Concurrent forces. Moment of a force, Varignon's theorem, resultant of parallel force system,								
Couple, Resu	ltant of general force system.							
Unit II	Equilibrium & Trusses	8 hrs						
Equilibrium: Introduction, Free body diagram, Equilibrium of concurrent, Equilibrium of two								
forces, three forces principle, parallel and general force system, type of load, type of support,								
type of beam	and support reaction.							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Trusses-Two force member, assumption, Analysis of plane trusses by Method of joints & method of section

Friction, Centroid and Moment of Inertia **Unit III**

8 hrs

Friction-Introduction, sliding and rolling friction, laws of coulomb friction, coefficient of friction, angle of repose, angle of friction, cone of friction, Laws of friction, application of friction on inclined planes, belt friction and ladders friction.

Centroid: Introduction, centroid of basic figure, centroid of composite figure, Moment of area, Centroid of plane lamina.

Moment of Inertia: Moment of inertia of simple geometrical figure, parallel axis theorem, perpendicular axis theorem, moment of inertia of composite figure.

Kinematics of Particle Unit IV

8 hrs

8 hrs

Introduction, basic concept, rectilinear motion: motion with uniform acceleration, gravitational acceleration and variable acceleration, Curvilinear motion: rectangular, normal and tangential component, projectile motion of a particle.

Introduction, Newton's Second Law of motion, Application of Newton's Second Law to rectilinear and curvilinear motion, Work energy principle, Impulse Momentum principle and impact.

Recommended Books

Text Books:

1. Engineering Mechanics, Ferdinand Singer, 3rd edition, Harper and Row

2. Engineering Mechanics (Statics and Dynamics) by Hibbeler R. C., Pearson Education

Reference Books:

1. Engineering Mechanics, S Timoshanko and Young, Tata McGraw Hill Education Pvt. Ltd. New Delhi.

2. Vector Mechanics for Engineers – Statics, Beer and Johnston, Tata McGraw Hill

3. Vector Mechanics for Engineers – Dynamics, Beer and Johnston, Tata McGraw Hill.

4. Engineering Mechanics - Statics and Dynamics, Meriam J. L. and Kraige L.G., John Wiley and Sons.

NPTEL Link :

1. https://archive.nptel.ac.in/courses/112/106/112106286/

2 https://onlinecourses.nptel.ac.in/noc19_me41/preview

	Dene		moory		mation			
Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2										

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II Course Code: ESC2401L02, Course Title: Applied Mechanics (Group II), Category: Engineering Science Course

	Teaching		Eva	luatio	n Sche	me			
т	т	D			TI N	heory Iarks		Practic	al Marks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	M Ma fo Pas	lin arks or sing	Max %	Min Marks for Passing
3	0	0	3	CCA	50	20 40			
39	0	0	Total: 39	ESE	50	20		-	-

Prerequisites: 12th Physics, Mathematics

Course Objectives: Purposes of the course are

Course Objectives:

Equip students with a thorough understanding of applied mechanics principles and their practical applications, enabling them to effectively analyze and solve engineering problems involving forces, loads, and moments, and to integrate these concepts within related engineering disciplines

Course	Course Outcomes: After successful completion of the course units the student will							
CO1	Understand the basic concept of force, moment & couple to determine resultant of various force systems.							
CO2	Apply conditions of Static equilibrium to free body diagram to solve engineering problem							
CO3	Analyze and solve engineering problems involving friction, centroids and moments							
	of inertia							
CO4	Analyze rectilinear and curvilinear motion of particle							
CO5	Apply Newton's second law, work energy and impulse momentum principles for particles							

Syllabus

	Syllabus								
Unit I	Unit IForce systems and its resultant7 hrs								
Fundamental	concept, force system, Resolution and composition of forces, R	esultant of							
Concurrent for	prces. Moment of a force, Varignon's theorem, resultant of parallel for	orce system,							
Couple, Resul	ltant of general force system.								
Unit II	Equilibrium & Trusses	8 hrs							
Equilibrium: forces, three f type of beam Trusses-Two f of section	Introduction, Free body diagram, Equilibrium of concurrent, Equilibri forces principle, parallel and general force system, type of load, type of and support reaction. Force member, assumption, Analysis of plane trusses by Method of join	um of two support, ts & method							
Unit III	Friction, Centroid and Moment of Inertia	8 hrs							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Friction- Introduction, sliding and rolling friction, laws of coulomb friction, coefficient of friction, angle of repose, angle of friction, cone of friction, Laws of friction, application of friction on inclined planes, belt friction and ladders friction.

Centroid: Introduction, centroid of basic figure, centroid of composite figure, Moment of area, Centroid of plane lamina.

Moment of Inertia: Moment of inertia of simple geometrical figure, parallel axis theorem, perpendicular axis theorem, moment of inertia of composite figure.

Unit IV	Kinematics of Particle	8 hrs						
Introduction,	basic concept, rectilinear motion: motion with uniform a	cceleration,						
gravitational	acceleration and variable acceleration, Curvilinear motion: r	ectangular,						
normal and ta	angential component, projectile motion of a particle.							
Unit V	Kinetics of Particle	8 hrs						
Introduction,	Newton's Second Law of motion, Application of Newton's Second	nd Law to						
rectilinear and	rectilinear and curvilinear motion, Work energy principle, Impulse Momentum principle and							
impact.								
	Recommended Books							

Text Books:

1. Engineering Mechanics, Ferdinand Singer, 3rd edition, Harper and Row

2. Engineering Mechanics (Statics and Dynamics) by Hibbeler R. C., Pearson Education **Reference Books:**

1. Engineering Mechanics, S Timoshanko and Young, Tata McGraw Hill Education Pvt. Ltd. New Delhi.

2. Vector Mechanics for Engineers – Statics, Beer and Johnston, Tata McGraw Hill

3. Vector Mechanics for Engineers – Dynamics, Beer and Johnston, Tata McGraw Hill.

4. Engineering Mechanics - Statics and Dynamics, Meriam J. L. and Kraige L.G., John Wiley and Sons.

NPTEL Link :

1. https://archive.nptel.ac.in/courses/112/106/112106286/

2 https://onlinecourses.nptel.ac.in/noc19_me41/preview

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2										

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II Course Code: ESC2401P04, Course Title: Applied Mechanics Lab (Group I and II), Category: Engineering Science Course

	Teaching	Scheme			Eva	luation Sche	me	
т	т	D			Theory Marks		Practic	al Marks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min Marks for Passing	Max %	Min Marks for Passing
0	0	2	1					
	Total H	Iours		CCA			100	40
0	0	26	Total: 26					

Prerequisites: Fundamentals of Applied Mechanics

Course Objectives: Purposes of the course are

1. To Demonstrate principle of statics and hands on Microsoft excel/Programming.

2. To teach how to Apply Condition of equilibrium for the determination of forces in the member.

3. To impart knowledge of kinematics and kinetics of particle and give real life exposure.

Course	Outcomes: After successful completion of the course experiments the student will
CO1	Determine resultant of the force system & coefficient of friction.
CO2	Explain Curvilinear Motion and Determine coefficient of restitution for given surface.
CO3	Apply principle of statics and determine the resultant of various force system by Microsoft excel & graphical Method.
CO4	Produce a chart of the force system, friction, and type of support using real-world examples.

List of Laboratory Experiments/Assignments/Micro Project

Group A (Any Six)

- 1. Verify law of polygon of forces/Law of triangle using Universal force table for given forces.
- 2. Verify Varignon's theorem of moments of forces using law of moment apparatus for given forces.
- 3. Determination of C.G of Planar figures.
- 4. Determination of forces developed in Jib and tie member of the jib crane.
- 5. Determination of coefficient friction of Rope/belt.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

- 6. Determine coefficient of friction using friction apparatus for given block on inclined plane.
- 7. Study of curvilinear motion.
- 8. Determination of coefficient of restitution.

Group B (Any Two)

- 1. Determination of the resultant of general force system by graphical method.
- 2. Determination of the Position of resultant force by graphical method.
- 3. Determination of resultant of various force system by using Microsoft excel.

Group C (Any Two)

- 1. Prepare chart of types of forces showing real life examples.
- 2. Prepare chart showing all types of beams having types of support (roller, hinged, fixed) with sketches and corresponding photographs of real life examples.
- Prepare photographic chart showing real life examples of uses of friction on horizontal (Walking, writing. etc.) and inclined plane (Slider in gardens, loading of heavy material in trucks etc.)
- 4. Market Survey: to identify the various steel rolled section used in construction Industry.

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
e Assessment	Evaluation	Involvement, Participation, and	10		
(CCA)		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2										
CO2	2	2										
CO3	2	2			1							
CO4	2	2							1			

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II Course Code: ESC2401L07, Course Title: Engineering Graphics and Computer Aided Drafting (Common to All), Category: Engineering Science Course

	Teaching	g Scheme			Evalua	tion S	chen	ne	
T	т	D			Theor	y Mar	ks	Pract Ma	ical % arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min Marks for Passing		Max	Min Marks for Passing
2	0	0	2	CCA	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Prerequisites: Knowledge of Geometry and Computer basics

Course Objectives: Purposes of the course are

1. To create awareness and emphasize the need of Engineering Drawing for an engineer.

- 2. To follow basic drawing standards and conventions.
- 3. To inculcate the habits of logical analysis of the problem using engineering drawing.
- 4. To develop skills in visualizing 3-Dimensional engineering components and documenting related information by using computer software.

	documenting related information of using computer software.
	Course Outcomes: After successful completion of the course units the student will
CO1	Explain the fundamentals of engineering graphics and basic principles of geometric construction
CO2	Use the principles of drawing to draw projection of plane
CO3	Apply the concept of orthographic projection of an object to draw several 2D views
	and its sectional views for visualizing the physical state of the object.
CO4	Apply the visualization skill to draw a simple isometric projection from given orthographic views
CO5	Draw Fully Dimensioned 2D, 3D drawings using computer aided drafting tools.

Syllabus

Unit I	Introduction to Drawing and Projection of Line	4 hrs						
Introduc	Introduction to Drawing, Introduction to drawing Instruments, Types of Lines, Drawing							
Sheet size	zes, Scale, Dimensioning, Symbols Construction of Polygon, Projection of	point,						
	Line							
Unit II	Projection of Plane	5 hrs						
Introduc	ction, Projection of plane when plane is parallel to one and perpendicular to	o other,						
Projection	of plane when plane is inclined to one plane and perpendicular to other plane	rojections						
	of planes when it is inclined to both reference planes.							
Unit III	Orthographic Projection	6 hrs						
First angle	and Third Angle Method of Projection, Introduction to different planes, Co	onversion						
of pictoria	l view of 3 dimensional object into orthographic view, Sectional Orth	ographic						
Projection	, Drafting the same using CAD Software							

	•	
Unit IV	Isometric Projection	6 hrs
Concept	of Isometric projection, isometric Scale and drawing, Conversion of ortho	graphic
view of	simple 3D object into isometric drawing, Drafting the same using CAD So	oftware.
Unit V	Introduction to CAD	5 hrs
Introduction	on to 2 D modeling Software, Basic Commands Such as Line, Circle, and p	olygon
Componen	nts and Assembly Drawing	
All fastene	ers and drawing of Simple Assembly including Fasteners (Limited to 4-5	
componen	ts), Drafting the same using CAD Software	
Text Bool	ΧS	
1. Bhatt	N. D Engineering drawing, Charotar publishing house, ISBN-13 978-938	0358963
,2014		
2. Shah F	P. J., Engineering Graphics, S. Chand and Company, 2013, ISBN-13. 978-	
81219	97614	
	Reference Books	
1. French,	T.E. Vierck, C. J:, and Foster, R.J., Engineering Drawing, Tata-Mc Graw	Hill,
	ISBN NO 0070223475, 2012.	
2. Narayan	ha K.L., Kannaiah. P., Engineering Drawing-Scitech Publications, Chennai	, ISBN-
	13. 978-9385983177 2014.	
3. Venugo	pal K., Engineering Drawing - New Age International, ISBN-13. 978-	
	8122431452 2004	
	4. https://archive.nptel.ac.in/courses/112/102/112102304/#	
	5. https://archive.nptel.ac.in/courses/112/105/112105294/	

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g	
Continuous	Faculty	5	5	5	5	5	25	20	
Assessment	Department	5	5	5	5	5	25		
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)			
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20	

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	03	02						01		02	02	02
CO2	03	02	03		03				03		02	02
CO3	03	02									02	02
CO4	03	02			03				03	02	02	02
CO5					03						02	02

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester I & II Course Code: ESC2401P09, Course Title: Engineering Graphics and Computer Aided Drafting Lab (Common to All), Category: Engineering Science Course

Teaching Scheme				Evaluation Scheme					
T	Т	D			Theory % Marks			Practical % Marks	
(Hr)	I (Hr)	r (Hr)	Cr	Exam	Max % Min for Passing		or g	Max	Min for Passing
0	0	2	1	CCA	-	-		100	40
0	0	26	Total: 26	CCA	-	-	-	100	40

Prerequisites:	Knowledge of	Geometry and	Computer	basics
1	0	,	1	

Course Objectives: Purposes of the course are

1. To create awareness and emphasize the need of Engineering Drawing for an engineer.

2. To follow basic drawing standards and conventions.

3. To inculcate the habits of logical analysis of the problem using engineering drawing.

4. To develop skills in visualizing 3-Dimensional engineering components and documenting related information by using computer software

and documenting related information by using computer software.						
Course Outcomes: After successful completion of the course units the student will						
CO1	Demonstrate Projection of points, lines and planes inclined to both plane and					
	practice on CAD					
CO2	Practice the concept of orthographic projection of an object to draw several 2D					
	views and its sectional views for visualizing the physical state of the object.					
CO3	Practice the visualization skill to draw a simple isometric projection from given					
	orthographic views on CAD					
CO4	Practice the principles of drawing to draw the view of various solids on CAD					

Syllabus

Practical Session	26 hrs			
1. Sheet No 1: Minimum 4 problems on Projection of lines and planes	06 hr			
2. Sheet No 2: Minimum 2 problems on Orthographic Projection	06 hr			
3. Sheet No 4: Minimum 2 problems on Isometric Projection				
4. Sheet No 5: Minimum 2 problems on Component drawing on CAD	04 hr			
5. Sheet No 6: Minimum 2 problems on Assembly drawing on CAD	06 hr			

Text Books

1. Bhatt N. D.. Engineering drawing, Charotar publishing house, ISBN-13 978-9380358963 ,2014

2. Shah P. J., Engineering Graphics, S. Chand and Company, 2013, ISBN-13. 978-8121997614

Reference Books

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

 French, T.E. Vierck, C. J:, and Foster, R.J., Engineering Drawing, Tata-Mc Graw Hill, ISBN NO 0070223475, 2012.
 Narayana K.L., Kannaiah. P., Engineering Drawing-Scitech Publications, Chennai, ISBN- 13. 978-9385983177 2014.
 Venugopal K., Engineering Drawing - New Age International, ISBN-13. 978- 8122431452 2004
 https://archive.nptel.ac.in/courses/112/102/112102304/#
 https://archive.nptel.ac.in/courses/112/105/112105294/

Scheme for Continuous Evaluation

Component	Level	Marks	Total	Passing	
Continuous	Progressive	Understanding Viva Voce	20	50	20
e Assessment	Evaluation	Involvement, Participation, and	10		
(CCA)		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	03	02										02
CO2	03	02			03							02
CO3	03	02	03					02				02
CO4	03	02	03		03				03	02	03	02

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I Course Code: VSC2401P01, Course Title: Experiential Learning I (Common to All), Category: Vocational and Skill Enhancement Course

	Teaching		Evalua	tion S	chen	ıe			
					Theory	% Ma	ırks	Pract Ma	ical % arks
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max	Min Pa ng	for ssi	Max	Min for Passi ng
0	1	2	2		-				
	Total	Hours	CCA		-	-	-	100	40
0	13	26	Total: 39		-	-			

Prerequisites: No

Course Objectives:

- 1. To demonstrate various safety measures and equipment related to workshop and industry
- 2. To demonstrate various equipment related to machine shop in the workshop
- 3. To use and handle various day to day life equipment
- 4. Utilization of MS Office tools for various purposes.
- 5. Train students for Basic Life Support (BLS).

Course Outcomes: After successful completion of the course the student will be able to

	-
CO1	Handle techniques for various tools and equipment commonly used in workshops are essential
	to reduce the risk of accidents and injuries during operation
CO2	Describe Control Lethe Drilling Crinding Milling CNC Defrigoration and Air

- CO2 Describe Centre Lathe, Drilling, Grinding, Milling, CNC, Refrigeration and Air Conditioning.
 CO3 Assembly of Two-Wheeler, Sheet Metal Job, Fitting Job and PC/Lanton for different difference of the second second
- CO3 Assembly of Two-Wheeler, Sheet Metal Job, Fitting Job and PC/Laptop for different input values.

CO4 Creation of engaging presentations using MS PowerPoint, including slide design, multimedia integration, and delivery techniques.

Syllabus

A) Safety and Safety Equipment/Accessories and Basic Life Support

An expert session on Shop floor Safety and Safety Equipment/Accessories 02 hrs Training Session on Land Safety and Water Safety under Basic Life Support (BLS)

B) Demonstration

No	Description	Operations	Hrs
1	Center Lathe	Facing, Turning, Knurling, Grooving and Taper	04
		Turning, Machine configuration as per ISO.	
2	Drilling, Grinding, Milling	Drilling and Boring, Surface and Cylindrical	04
	Machine	Grinding and Gear Cutting	
3	CNC Machine	Facing and Turning	04
4	Refrigeration and	Parts and Working Cycle.	04
	Air Conditioning		
		Total hrs	16

C) Hands on Experience

No	Description	Operations	Hrs
1	Two-Wheeler	Dismantle and Assembly of Spark Plug,	06
		Carburetor, Wheels,	
2	Sheet Metal Job	Bending, Cutting, Piercing, Perforating,	08
		Punching, Riveting.	
3	Fitting Job	Drilling, Tapping, Male and Female Joints,	06
		Close Tolerances	
4	PC/Laptop Assembly	Dismantle and Assembly of SMPS, Hard Disk,	06
		Mother board etc.	
		Total hrs	26

D) MS Office

No	Description	Hrs
1	Word, Excel, PowerPoint: Report and Presentations on above	08

Reference: Rashtriya Life Saving Society (India), https://www.lifesavingindia.org/

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
e Assessment	Evaluation	Involvement, Participation, and	10		
(CCA)		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			2							2	2	3
CO2	2	2		2	3	2		2		2		3
CO3	2	2			3	2				2		3
CO4	2	2			3	2	2		2	2		3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester I Course Code: HSM2401P01, Course Title: Professional and Technical Communication (Common to All), Category: Ability Enhancement Course

	Teaching		Evalua	tion S	Schei	ne			
				Theor		y Mar	⁷ Marks		ectical arks
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max %	Min Pa ng	Min for Passi ng		Min Marks for Passing
0	1	2	2		-				
	Total	Hours		CCA	-			100	40
0	13	26	Total: 39		-	-			

Prerequisites: Basic English Grammar Skills Course Objective: Purposes of Course are: 1. Equip students with essential professional and technical communication skills necessary for success in the modern workplace. 2. Emphasize both written and verbal communication. 3. Cover topics in active listening, and public speaking. Course Outcomes: After Successful completion of course units, students will Analyze and evaluate spoken information critically for understanding the context and **CO1** credibility of the source. Demonstrate effective interpersonal communication skills for harmonious and **CO2** productive interactions. **CO3** Articulate strategies for clear and coherent writing skills for personal & professional communication needs. Develop skills for effective and authentic non-verbal communication to ace the **CO4** professional communication needs.

Unit I Development of Listening and Speaking Skills	04 Hrs.					
Introduction to Listening skills, Barriers to Listening skills, active Listening techniques, listening for						
main ideas and details, Note taking strategies. Introduction to Speaking skills, Building voca	bulary and					
fluency, Conversational Skills, Public speaking fundamentals. Speed and Fluency, Removin	ıg MTI.					
Unit II Development of Writing and Reading Skills	03 Hrs.					
Introduction to Effective Written Communication, fundamentals of grammar and punctuation	on,					
Paragraph Structure, Essay writing, Report writing, Formal letter writing. Importance of Re	ading,					
Comprehension and solving case studies, Synthesis writing						
Unit III Fundamentals of Communication	03 Hrs.					
What is communication? Importance of communication, Communication Types - Verbal, N	lon-verbal,					
why is non-verbal communication important? Making eye contact (or lack thereof), Shakin	ng hands, -					
Crossing or uncrossing legs, Folding or unfolding arms, Fidgeting, Eye contact, Smiling or	frowning,					
Communication styles.						

Unit IV	Business Communication	03 Hrs.
Business	communication theory, Email Etiquette, Digital Communication, Presentation Sk	kills, Ethics
in Busine	ess Communication, Kinesics and Pitch modulation	
	Practical/ Lab Sessions	
Lab	Activities	Duration
Session		(Hrs.)
1	Listening Skills-Listen to the Audio and answer the questions (Language Lab	2
	Software & Linguaphone audios)	
2	Listening Skills- Listen & Repeat Activity	2
3	Reading Skills- Communication Case studies	2
4	Reading Skills- Newspaper Article, Short Story, Research Article Review &	2
	Discussion	
5	Writing Skills - Formal Letter writing (Application letter, Complaint Letter,	2
	Enquiry Letter)	
6	Writing Skills - Story Writing, Paragraph Writing	2
7	Writing Skills - Report Writing (Technical Report, Accident Report, Progress	2
	Report)	
8	Speaking Skills- Self Introduction	2
9	Speaking Skills- JAM Session	2
10	Speaking Skills- Debate	2
11	Speaking Skills-Role play	2
12	Presentation	2
13	Team Building	2
Reference	ee Books	
1. C	Communication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson),2 8131799905, 9788131799901	2011, ISBN
2. C	Communication Skills for Technical Students by T.M. Farhathullah (Orient Longr SBN - 9788125022473	nan)2002,
3. V	Vritten Communication in English by Saran Freeman (Orient Longman) 1977, 81	25004262
4. E	Essential English Grammar (Elementary & Intermediate) Raymond Murphy (CUF	P), 1990,
5. C	Communication for Business: A Practical Approach by Shirley Tailor (Longman), 9780273687658	2005, ISBN
6. I	Developing Communication Skills by Krishna Mohan & Meera Banerji (Macmilla SBN - 9780230638433	an),2009,
7. E N	Business Correspondence and Report Writing, R. C. Sharma & Krishna Mohan (T AcGraw Hill,2017, ISBN - 9789390113002	`ata
8. T 3	Cechnical communication: Principles and practice, Raman, Minakshi, and Sangita rd ed. Oxford University Press, 2015, ISBN - 978-0199457496	Sharma.
9. h	ttps://ielts.org	
10. N	NPTEL Course-Business English Communication IIT	
	Madras Link https://youtu.be/GwF4ypDSr-A	
11 N	PTEL Course- Introduction to Effective Communication	
	Link https://archive.nptel.ac.in/courses/109/104/109104030/	

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
e Assessment	Evaluation	Involvement, Participation, and	10		
(CCA)		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

Scheme for Continuous Evaluation

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	1	-	-	-	1	1	3	2	3
CO2	-	1	1	1	1	1	1	1	2	3	2	3
CO3	1	-	2	-	1	-	-	2	2	3	2	3
CO4	-	-	-	-	2	-	-	2	2	3	1	3

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I Course Code: LLC2401P001, Course Title: Liberal Learning - I (Common to All), Category: Co-Curricular Course

	Evaluation Scheme								
					The M	ory % arks		Prac M	tical % arks
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max	Min for Passing		Max	Min for Passin g
-	1	2 2							
Total Hours			CCA	-	-	-	100	40	
-	13	26	Total: 39						

Prerequisites: None

Course Objectives:
1. To promote the holistic development of students through engagement in various extra- curricular activities.
2. To enhance students' life skills through individual and group activities.

Course Outcomes:After successful completion of the course the student will be able to

CO1	Demonstrate linguistic fluency in foreign or native languages through studying the
	cultural and historical contexts related to their chosen discipline, understanding its
	evolution, traditions, and the role it plays within various cultural settings and narratives.
CO2	Demonstrate enhanced ability to creatively express themselves and effectively
	communicate ideas, emotions, and, or by creating innovative and artistic art pieces.
CO3	Express creativity and individuality through their work, whether through artistic
	creations, musical performances, or athletic activities, and present and perform their

skills confidently in various settings.

Unit 1	German Language	13 hrs							
	History and significance of German language								
	• Overview of the historical development of German language								
	• Importance in ancient texts, literature, and cultural heritage								
	• Introduction and Basics of Language- Alphabet, Numbers								
	Phonetics and pronunciation								
	 Pronunciation of vowels and consonants 								
	Practice with phonetic drills								
	Basic Grammar								
	Vocabulary building								
	• Everyday vocabulary: greetings, numbers, common objects								
	Basic conversational phrases								
Unit 2	Music (Vocal)- Semi Classical	13 hrs							
	• Music History: Overview of different periods and styles in								
	music history, from classical to contemporary								
	• Introduction to Music: Basic concepts such as melody,								
	harmony, rhythm, and form.								

	 Music Theory: Fundamentals of music notation, scales, chords, and rhythm. Performance Skills: Tips and strategies for improving live performance, including stage presence and audience interaction 	
Unit 3	Sports (Indoor)	13 hrs
	Introduction to various Indoor sports	
	 Rules and basic skills of selected indoor sport 	
	• Team-building activities and games.	
	• Importance of sportsmanship and ethical behavior in sports	
	• Conflict resolution in team settings	
	• Leadership and communication in sports	
	• Matches	

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
e Assessment	Evaluation	Involvement, Participation, and	10		
(CCA)		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
C01	2								2	2		3
CO2	2								2	2		3
CO3	2								2	2		3

3: High, 2: Moderate, 1: Low, 0: No Mapping

First Year (FY) B Tech Semester I & II Course Code: BSC2402L04, Course Title: Engineering Chemistry (Group A), Category: Basic Science Course

	Teaching		Evalua	tion S	Scher	ne			
т	т	D			Theor	y Mai	ks	Pra Ma	ctical arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max Min % Marks for Passing		Max	Min marks for Passing	
3	0	0	3	CCA	50	20	20		
39	0	0	Total: 39	ESE	50	20	40	-	-

Prerequisites: BSC2401L02

Volumetric Titration, Electrochemical Series, Periodic Table, Classification and properties of polymers, Structure properties relationship.

Course Objectives: Purposes of Course are:

- 4. To understand technology involved in analysis and improving quality of water as commodity.
- 5. To understand corrosion mechanisms and preventive methods for corrosion control.
- 6. To study conventional and alternative fuels with respect to their properties and applications.
- 7. To understand structure, properties and applications of specialty polymers.
- 8. To understand the principle of green chemistry and the smart materials required for societal usage.

Course Outcomes: After Successful completion of course units, students will

- CO1 Apply the different methodologies for analysis of water and techniques involved in softening of water as commodity.
- CO2 Identify the causes of corrosion and methods for minimizing corrosion
- CO3 Relate fuel and suggest use of alternative fuels for minimizing emission of carbon.
- CO4 Demonstrate the knowledge of advanced engineering materials for various engineering applications

CO5 Implement the green chemistry principles, and properties and application of smart sensors materials to meet the technological challenges.

Unit I Wa	ater Technology	8 hrs					
Introduction, Types of hardness, Determination of hardness (EDTA method) and Alkalinity in							
Water, numerie	cal.						
Water treatment	nt: i) Zeolite method and numerical ii) Demineralization method. Purif	ication					
of water: Reve	erse osmosis and Electro-dialysis.						
Unit II Co	Unit IICorrosion and Corrosion Control8 hrs						
Introduction, N	Mechanism of Dry Corrosion and Wet Corrosion, Pilling Bedworth Rule	e, Factors					
affecting rate of	of corrosion.						
Corrosion Co	Corrosion Control: Cathodic and Anodic Protection, Types of Metal Coating (Cathodic and						
Anodic Coating), Methods of Applying Coating - Hot dipping, Electroplating, Cementation.							
Unit III Fu	iels	8 hrs					

Calorific value (CV): Types of Calorific Value, Determination of Calorific value: Principle,					
construction and working of Bomb calorimeter and numerical,					
Solid fuel: Coal: Analysis of Coal-Proximate and numerical					
Liquid fuel: Petroleum: Refining of petroleum /crude oil and composition, boiling range and					
uses of various fractions.					
Gaseous fuel: Hydrogen gas as future fuels – production and storage. Fuel Cell (PEMFC).					
Alternative Fuels – Power Alcohol and Biodiesel					
Unit IVPolymers in Engineering8 hrs					
Introduction, Compounding of plastics, Structure, properties and Applications of					
Biodegradable Polymer, Conducting Polymer, Electroluminescent Polymers, Thermoplastics					
Polymer and Polymer Composites (FRP)					
Unit VGreen Chemistry and Smart Sensors7 hrs					
Green Chemistry: Introduction, 12 principles of green chemistry, E-factor, atom economy,					
examples of green synthesis (polycarbonate)					
RFID and IONT materials: Introduction, Components of RFID, structure, properties and					
applications of substrates - Graphene oxide, carbon nanotubes (CNTs)					
Reference Books					
1. Textbook of Engineering Chemistry by Dr. S. S. Dara, Dr. S. S. Umare, S. Chand &					
Company Ltd.					
2. Engineering Chemistry, Wiley India Pvt. Ltd.					
3. Polymer Science and Technology, By Joel R. Fried, 3 ed, Prentice Hall Publisher					
4. Functional and smart materials, Chander Prakash, Sunpreet Singh, J. Paulo Davim, 2020,					

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	J T 1)	Unit Tes	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							1		1	1
CO2	3	1							1			
CO3	3	2					1			1		
CO4	3					1						
CO5	3	2						1				1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester I & II Course Code: BSC2402L05, Course Title: Engineering Chemistry (Group B), Category: Basic Science Course

Т	eaching	Scheme			Evaluati				
				Theory Marks			Practical Marks		
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max%	Min for F	marks Passing	Max	Min marks for Passing
3	0	0	3	CCA	50	20			
39	0	0	Total: 39	ESE	50	20 40		-	-

Prerequisites: Course Code

Volumetric Titration, Electrochemical Series, Periodic Table, Classification and properties of polymers, Structure properties relationship.

Course Objectives: Purposes of Course are:

- 9. To understand technology involved in analysis and improving quality of water as commodity.
- 10. To understand corrosion mechanisms and preventive methods for corrosion control.
- 11. To study conventional and alternative fuels with respect to their properties and applications.
- 12. To understand structure, properties and applications of specialty polymers.
- 13. To understand structure, properties and applications of nano material and acquire the knowledge of electro-analytical techniques that enables rapid and precise understanding of materials.
- Course Outcomes: After Successful completion of course units, students will
- CO1 Apply the different methodologies for analysis of water and techniques involved in softening of water as commodity.
- CO2 Identify the causes of corrosion and methods for minimizing corrosion
- CO3 Relate fuel and suggest use of alternative fuels for minimizing emission of carbon.
- CO4 Demonstrate the knowledge of advanced engineering materials for various engineering applications
- CO5 Select appropriate electro techniques and methods of material analysis.

Unit I	Water Technology	8 hrs					
Introduction, Types of hardness, Determination of hardness (EDTA method) and Alkalinity in							
Water, nur	nerical. Water treatment: i) Zeolite method and numerical ii) Deminer	ralization					
method. Pu	rification of water: Reverse osmosis and Electro-dialysis.						
Unit II	Corrosion and Corrosion Control	8 hrs					
Introductio	n, Mechanism of Dry Corrosion and Wet Corrosion, Pilling Bedworth Rule	e, Factors					
affecting ra	ate of corrosion.						
Corrosion	Control: Cathodic and Anodic Protection, Types of Metal Coating (Cath	nodic and					
Anodic Co	ating), Methods of Applying Coating - Hot dipping, Electroplating, Ceme	ntation.					
Unit III	Fuels	8 hrs					

Calorific value (CV): Types of	Calorifi	c Value,	Determ	ination of	Calorific v	value: Pr	inciple,		
construction and working of Bomb calorimeter and numerical,										
Solid fuel: Coal: Analysis of Coal-Proximate and numerical										
Liquid fuel: Petroleum: Refining of petroleum /crude oil and composition, boiling range and										
uses of various fra	actions.							_		
Gaseous fuel: Hy	drogen gas as	future fu	iels – pro	oductior	n and stora	ge. Fuel Ce	ell (PEM	FC).		
Alternative Fuels	- Power Alcol	nol and E	Biodiesel							
Unit IV Polyn	ners in Engine	eering						8 hrs		
Introduction, Con	npounding of p	plastics, S	Structure	, propei	ties and A	pplications	of			
Biodegradable Polymer, Conducting Polymer, Electroluminescent Polymers, Thermoplastics										
Polymer and Polymer Composites (FRP)										
Unit VNanomaterials and Instrumental Methods of Analysis8 hrs										
Introduction, Classification of Nanomaterials, Properties of nanomaterials - Optical,										
Electrical, Therm	al and Mechar	nical, Ap	plicatior	ns of Na	anomateria	ls – Cataly	ysis, Eleo	ctronics		
and Telecommuni	cations, Medic	cines and	l Compo	sites,						
Structure, propert	ies and applica	ations of	Graphen	ie, CNT	's and Qua	intum Dots	5.			
Conductometry:	Introduction, o	conductiv	vity cell,	Conduc	ctometric ti	trations of	acid vers	sus base		
with titration curv	ve.									
pH-metry: Introd	luction, standar	rdization	of pH m	neter, pH	I metric tit	ration of st	rong acid	l versus		
strong base with t	itration curve.									
Reference Books										
1. Textbook of E	Engineering Cl	hemistry	by Dr.	S. S. I	Dara, Dr. S	S. S. Uma	re, S. Cl	nand &		
Company Ltd.		-	-							
2.Engineering Ch	emistry, Wiley	' India Pv	vt. Ltd.							
3.Polymer Scienc	e and Technolo	ogy, By J	Joel R. F	ried, 3 e	ed, Prentice	e Hall Publ	isher			
4.Nano: The esser	ntials – Unders	standing	nanoscie	ence and	l nanotechi	nology.				
5.Instrumental M	ethods of Ch	emical A	Analysis,	G. R.	Chatwal&	2 S. K. A1	nand, Hi	malaya		
Publishing House			-					-		
6.Basic Concept	of Analytical	Chemis	stry, 2ed	, S. N	A. Khopka	ır, New A	ge-Intern	national		
Publisher	-		-		-		-			
					_					
	Schei	me for	Theory	v Exan	nination					
Component	Level	Unit	Unit	Unit	Unit 4	Unit 5	Total	Passin		
		1	2	3			1000	g		
								Ø		
Continuous	Faculty	5	5	5	5	5	25	20		
Comprehensive	Department	5	5	5	5	5	25			
Assessment	Department		5	5	5	5	23			
(CCA) Unit Test 1 (UT1) Unit Test 2 (UT2)										
Fnd Semester	Institute	10	10	10	10	10	50	20		
Examination	monute	10	10		10	10	50	20		
(ESE)										

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2							1		1	1
CO2	3	1							1			
CO3	3	2					1			1	1	
CO4	3					1						
CO5	3											1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II Course Code: BSC2402L06, Course Title: Engineering Chemistry (Group C), Category: Basic Science Course

	Teaching	g Scheme			Evalua	tion S	Scher	ne	
					Theor	y Mai	ks	Pra Ma	ctical arks
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max %	Mi mai fo Pass	in rks r sing	Max	Min marks for Passing
3	0	0	3	CCA	50	20			
39	0	0	Total: 39	ESE	50	20	40	-	-

Prerequisites: BSC2401L02

Volumetric Titration, Electrochemical Series, Periodic Table, Classification and properties of polymers, Structure properties relationship.

Course Objectives: Purposes of Course are:

- 14. To understand technology involved in analysis and improving quality of water as commodity.
- 15. To understand corrosion mechanisms and preventive methods for corrosion control.
- 16. To study conventional and alternative fuels with respect to their properties and applications.
- 17. To understand structure, properties and applications of specialty polymers.
- 18. To study the properties and applications of surfactants and lubricant

Course Outcomes: After Successful completion of course units, students will

CO1 Apply the different methodologies for analysis of water and techniques involved in softening of water as commodity.

CO2 | Identify the causes of corrosion and methods for minimizing corrosion

- CO3 Relate fuel and suggest use of alternative fuels for minimizing emission of carbon.
 CO4 Demonstrate the knowledge of advanced engineering materials for various engineering applications
- CO5 Appreciate the knowledge of properties of surfactants and lubricants.

Unit I	Water Technology	8 hrs						
Introduction	Introduction, Types of hardness, Determination of hardness (EDTA method) and Alkalinity in Water,							
numerical. Ill effects of hard water in boiler - boiler corrosion, scale and sludge.								
Water trea	tment: i) Zeolite method and numerical ii) Demineralization method. Purificatio	n of						
water: Reve	erse osmosis and Electro-dialysis.							
Unit II	Corrosion and Surface Control	8 hrs						
Introductio	on, Mechanism of Dry Corrosion and Wet Corrosion, Pilling Bedworth Rule	e, Factors						
affecting ra	ate of corrosion.							
Corrosion	Control: Cathodic and Anodic Protection, Types of Metal Coating (Cath	nodic and						
Anodic Coating), Methods of Applying Coating - Hot dipping, Electroplating, Cementation.								
Unit III	Fuels	8 hrs						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Calorific value (CV): Types of Calorific Value, Determination of Calor	ific value: Principle,
construction and working of Bomb calorimeter and numerical,	_
Solid fuel: Coal: Analysis of Coal-Proximate and numerical	
Liquid fuel: Petroleum: Refining of petroleum /crude oil and composition, boil	ling range and uses of
various fractions.	
Gaseous fuel: Hydrogen gas as future fuels – production and storage. Fuel Cell	(PEMFC).
Alternative Fuels – Power Alcohol and Biodiesel	
Unit IV Polymers in Engineering	8 hrs
Introduction, Compounding of plastics, Structure, properties and Applicat	tions of
Biodegradable Polymer, Conducting Polymer, Electroluminescent Polym	ers Thermonlastics
Polymer and Polymer Composites (FRP)	
Polymer and Polymer Composites (FRP)Unit VSurfactants and Lubricants	8 hrs
Polymer and Polymer Composites (FRP)Unit VSurfactants and LubricantsSurfactants: Methods of preparation, cleaning mechanism, Critical micel	8 hrs le concentration and
Polymer and Polymer Composites (FRP)Unit VSurfactants and LubricantsSurfactants: Methods of preparation, cleaning mechanism, Critical micelits determination. Hydrophobic and Hydrophilic interactions, Micelles and	8 hrs le concentration and d reverse micelles.
Polymer and Polymer Composites (FRP)Unit VSurfactants and LubricantsSurfactants: Methods of preparation, cleaning mechanism, Critical micelits determination. Hydrophobic and Hydrophilic interactions, Micelles andLubricants: Introduction, classification of lubricants - Solid, Semi	8 hrs le concentration and d reverse micelles. -solid and Liquid
Polymer and Polymer Composites (FRP)Unit VSurfactants and LubricantsSurfactants: Methods of preparation, cleaning mechanism, Critical micelits determination. Hydrophobic and Hydrophilic interactions, Micelles and Lubricants: Introduction, classification of lubricants - Solid, Semi Lubricants, Properties of lubricants: Physical properties and Chemical pro-	8 hrs le concentration and d reverse micelles. –solid and Liquid operties.
Polymer and Polymer Composites (FRP)Unit VSurfactants and LubricantsSurfactants: Methods of preparation, cleaning mechanism, Critical micelits determination. Hydrophobic and Hydrophilic interactions, Micelles and Lubricants: Introduction, classification of lubricants - Solid, Semi Lubricants, Properties of lubricants: Physical properties and Chemical proReference Books	8 hrs le concentration and d reverse micelles. -solid and Liquid operties.
Polymer and Polymer Composites (FRP)Unit VSurfactants and LubricantsSurfactants: Methods of preparation, cleaning mechanism, Critical micelits determination. Hydrophobic and Hydrophilic interactions, Micelles and Lubricants: Introduction, classification of lubricants - Solid, Semi Lubricants, Properties of lubricants: Physical properties and Chemical proReference Books5. Engineering Chemistry by O. G. Palanna, Tata Magraw Hill Education	8 hrs le concentration and d reverse micelles. -solid and Liquid operties.
Polymer and Polymer Composites (FRP)Unit VSurfactants and LubricantsSurfactants: Methods of preparation, cleaning mechanism, Critical micelits determination. Hydrophobic and Hydrophilic interactions, Micelles and Lubricants: Introduction, classification of lubricants - Solid, Semi Lubricants, Properties of lubricants: Physical properties and Chemical proReference Books5. Engineering Chemistry by O.G. Palanna, Tata Magraw Hill Education 6. Textbook of Engineering Chemistry by Dr.S. S. Dara, Dr.S. S. J.	8 hrs le concentration and d reverse micelles. -solid and Liquid operties.
Polymer and Polymer Composites (FRP) Unit V Surfactants and Lubricants Surfactants: Methods of preparation, cleaning mechanism, Critical micel its determination. Hydrophobic and Hydrophilic interactions, Micelles and Lubricants: Introduction, classification of lubricants - Solid, Semi Lubricants, Properties of lubricants: Physical properties and Chemical pro Reference Books 5. Engineering Chemistry by O .G. Palanna, Tata Magraw Hill Education 6. Textbook of Engineering Chemistry by Dr. S. S. Dara, Dr. S. S. U	8 hrs le concentration and d reverse micelles. -solid and Liquid operties. n Pvt. Ltd. Jmare, S. Chand &

- 7. Polymer Science and Technology, By Joel R. Fried, 3 ed, Prentice Hall Publisher
- 8. Surfactants and Polymer in aqueous solution by K. Holmberg, B. Jonsson, V. Kronberg and B. Lindman

	Schel	ne ior	Ineory	Exall	ппацоп			
Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2							1		1	1
CO2	3	1							1			
CO3	3	2					1			1	1	
CO4	3					1						
CO5	3											1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester I & II Course Code: BSC2402P08, Course Title: Engineering Chemistry Lab (Group A, B and C), Category: Basic Science Course

	Teachin	g Scheme			Evalua	ation S	Sche	me	
L (Hr)	T (Hr)	P (Hr)	Cr	Enom	The M	ory % arks	Practical % Marks		
				Exam	Max %	Mi Mai fo Pas	in rks or sin	Max	Min marks for Passin g
0	0	2	1	CCA	-	-		100	40
0	0	20	Total: 20	CCA	-	-	-	100	40

Prerequisites: BSC2401P02

Volumetric Titration, Electrochemical Series, Periodic Table, Classification and properties of polymers, Structure properties relationship.

Course Objectives: Purposes of Course are:

19. To understand technology involved in analysis of various solutions or solid materials.

20. To understand preventive methods for corrosion control.

21. To synthesize the products which has wide applications in engineering.

Course Outcomes: After Successful completion of course units, students will

CO1 Distinguish the different methodologies for analysis of water or coal using numerous techniques involved.

CO2 Instrumental methods of analysis.

CO3 Relate the green way to synthesize the materials.

PR 1	Hardness of Water	2 hrs
To determ	ine hardness of water by EDTA method	
PR2	Alkalinity in Water	2 hrs
To determine	ine alkalinity of water	
PR 3	Proximate analysis of coal	2 hrs
.To determ	ine the moisture content from coal using proximate analysis.	
PR 4	Electroplating	2 hrs
To coat co	pper and zinc on iron plate using electroplating.	
PR 5	Rate of corrosion	2 hrs
To study o	f rate of corrosion in different pH of the solution.	
PR 6	Bomb Calorimeter	2 hrs
To determ	ine the calorific value of given coal sample.	
PR 7	Molecular weight of Polymer	2 hrs
To determ	ine the molecular weight of polyvinyl alcohol using Oswald's Viscometer.	
PR 8	Conductometry	2 hrs
To determ	ine the strength of mixture of strong acid and weak acid using conductome	etry.

PR 9	pH metry	2 hrs				
To determi	ne the strength of strong acid using pH metry.					
PR 10	Colorimeter	2 hrs				
To estimat	e the amount of copper from E-waste using Colorimeter.					
PR 11	Viscosity of lubricant.	2 hrs				
To determi	ne the viscosity of given lubricant using Redwood Viscometer.					
Reference	Books					
9. Vogel's	s textbook of Quantitative chemical analysis by J Mendham, R C Den	ney, J D				
barnes,	M J K Thomas, Pearson Education.					
10. Labor	10. Laboratory Manual on Engineering Chemistry by Sudha Rani (Author), S.K.					

Bashin (Author), Dhanpat Rai Publishing Company Private Limited-New Delhi; Third edition

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
e Assessment	Evaluation	Involvement, Participation, and	10		
(CCA)		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

Scheme for Continuous Evaluation

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							1	1		
CO2	3	2							1	1		1
CO3	3	2							1	1		

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester II Course Code: BSC2402L09, Course Title: Differential Equation & Integral Calculus (Group A), Category: Basic Science Course

Teaching Scheme					Evalua	tion	Scheme		
т	т	D			Theory % Marks			Prac % M	ctical Iarks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	N P	Min for Passing		Min for Passing
3	01	0	4	CCA	50	20			
39	13	0	Total: 52	ESE	50	20	40	-	-

Prerequisites: BSC2401L13- Integration, Differential Equation, Three-dimensional coordinate systems

Course Objective: Purposes of the course are

1.To make the students familiarize with Mathematical Modeling of physical systems using differential equations

2. To make the students familiarize with advanced techniques of integration, tracing of curves, multiple integrals and their applications.

3. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance thinking power, useful in their disciplines

Course Outcomes: After successful completion of the course units the student will

CO1	Apply the effective mathematical tools to solve first order differential equations to model physical processes such as Newton's law of cooling, electrical circuit etc
CO2	Use advanced integration techniques such as Reduction formulae, Beta functions, Gamma functions, Differentiation under integral sign needed in evaluating multiple integrals and their applications.
CO3	Draw the Cartesian, Polar, Parametric & Rose curve for a given equation.
CO4	Evaluate multiple integrals and its application to find area bounded by curves, volume bounded by surfaces.
CO5	Solve differential equations of first order and Integration using different numerical methods used in modern scientific computing.

Unit I Ordinary Differential Equation & Its Applications							
Exact differential equations, Equations reducible to exact form. Linear differential equations,							
Applications of Differential Equations to Orthogonal Trajectories, Newton's Law of Coo	ing, Kirchhoff's						
Law of Electrical Circuits, One dimensional Conduction of Heat							
Unit II Integral Calculus	8 hrs						
Reduction Formulae of standard trigonometric functions, , Beta function, Gamma	functions,						
properties of Beta & Gamma function, Differentiation under integral sign							
Unit III Curve Tracing	8 hrs						
Type I: Properties of Cartesian curve , Tracing of Cartesian Curve							
Type II: Properties of Parametric curves, Tracing of Parametric curves, Type 3: Properties of							
Polar Curves, Tracing of Polar Curves, Rose curves							
Unit IV Multiple Integration	8 hrs						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Double Integration: Direct evaluation, limits are not given, transformation to polar & Change of order of integration , Applications to find Area

Triple integrations: Spherical polar coordinate, Cylindrical polar coordinate, Applications to find Volume

Unit V Numerical Methods

7 hrs

Numerical Solution of Ordinary Differential Equation: Euler's Method Modified Euler's Method, Runge Kutta 4th Order Method

Interpolation: Newton's Forward difference and Backwards Difference Method Numerical Integration: Trapezoidal And Simpson's Rule

Text Book:

1. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi), 2019, 44th Edition, ISBN-978-81-933284-9-1.

2. Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill), 2019,35th Edition,ISBN-978-0-07—063419-O.

Reference Books

1. Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.), 2022, 10th Edition, ISBN-978-81-265-5423-2.

2. Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education), 2019, 2nd Edition, ISBN-978-81-7758-546-9.

3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017, 7th Edition, ISBN-978-81-315-1752-9.

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	-	-	-
CO2	2	1	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester II

Course Code: BSC2402L10, Course Title: Differential Equation & Integral Calculus, Category (Group B): Basic Science Course

	Teaching		Evaluat	ion S	cheme	9			
т	т	Đ			Theory	% M	arks	Pra % N	ctical Aarks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	M Ma fo Pas	in rks or sing	Max	Min Marks for Passin g
3	01	0	4	CCA	50	20			
39	13	0	Total: 52	ESE	50	20	40	-	-

Prerequisites: BSC2401L15 Integration, Differential Equation, Three-dimensional coordinate systems

Course Objective: Purpose of the course are

- 1. To make the students familiarize with Mathematical Modeling of physical systems using differential equations
- 2. To make the students familiarize with advanced techniques of integration, tracing of curves, multiple integrals and their applications.
- 3. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance thinking power, useful in their disciplines

Cour	se Outcomes: After successful completion of the course ,students will
CO1	Apply the effective mathematical tools to solve first order differential equations to model physical processes such as Newton's law of cooling, electrical circuit etc
CO2	Use advanced integration techniques such as Reduction formulae, Beta functions, Gamma functions, Differentiation under integral sign needed in evaluating multiple integrals and their applications.
CO3	Draw the Cartesian, Polar, Parametric & Rose curve.
CO4	Use the concepts of solid geometry using equations of sphere, cone and cylinder in a comprehensive manner
CO5	Evaluate multiple integrals and its application to find area bounded by curves, volume bounded by surfaces

Unit I Ordinary Differential Equation & Its Applications	6 hrs				
Exact differential equations, Equations reducible to exact form. Linear differential equations,					
Applications of Differential Equations to Orthogonal Trajectories, Newton's Law of Cooling,					
Kirchhoff's Law of Electrical Circuits, One dimensional Conduction of Heat					
Unit II Integral Calculus	6 hrs				
Reduction Formulae of standard trigonometric functions, , Beta function, Gamma function	ns,				
properties of Beta & Gamma function, Differentiation under integral sign					
Unit III Curve Tracing	6 hrs				
Type I: Properties of Cartesian curve ,tracing of Cartesian curve					
Type II: Properties of parametric curves ,tracing of parametric curves, Type 3: Properties	of polar				
curves, tracing of polar curves, rose curves					
Unit VI Coordinate Geometry	7 hrs				
Cartesian, Spherical polar and Cylindrical coordinate systems, Sphere, Right circu	lar Cone				

and Right circular Cylinder.	
Unit V Multiple Integration	7 hrs
Double Integration: Direct evaluation, limits are not given, transformation to polar & Change	e of order
of integration, Applications to find Area	
Triple integrations: Spherical polar coordinate, Cylindrical polar coordinate, Applications to	find
Volume	
Text Book:	
1. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi),2019,44 th	
Edition,ISBN No - 978-81-933284-9-1	
2. Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Advanced ,2019,	35 th
Edition, ISBN No-13978-0-07-063419-0	
Reference Books	
1. Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.),2022,10th Edition, ISBN	N No -
978-81-265-5423-2	
2.Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education), 2019,2 nd Ed	lition,
ISBN No -978-81-7758-546-9	
3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017,7th Edit	ition,
ISBN 13:978-81-315-1752-9, ISBN 10:81-315-1752-7	

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	-	-	-
CO2	2	1	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester II

Course Code: BSC2402L11, Course Title: Differential Equation & Integral Calculus, Category (Group C): Basic Science Course

Teaching Scheme				Evaluation Scheme					
т	т	ГР			Theory % Marks		larks	Practical % Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min for Passing		Max	Min for Passing
3	01	0	4	CCA	50	20			
39	13	0	Total: 52	ESE	50	20	40	-	-

Prerequisites: BSC2401L15 Integration, Differential Equation, Three-dimensional coordinate systems

Course Objective: Purpose of the course are

- 1. To make the students familiarize with Mathematical Modeling of physical systems using differential equations
- 2. To make the students familiarize with advanced techniques of integration, tracing of curves, multiple integrals and their applications.
- 3. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance thinking power, useful in their disciplines

Cours	Course Outcomes: After successful completion of the course ,students will						
CO1	Apply the effective mathematical tools to solve first order differential equations to model physical processes such as Newton's law of cooling, electrical circuit etc						
CO2	Use advanced integration techniques such as Reduction formulae, Beta functions, Gamma functions, Differentiation under integral sign needed in evaluating multiple integrals and their applications.						
CO3	Draw the Cartesian, Polar, Parametric & Rose curve.						
CO4	Find the Fourier series representation and harmonic analysis for design and analysis of periodic continuous and discrete systems						
CO5	Evaluate multiple integrals and its application to find area bounded by curves, volume bounded by surfaces						

Unit I	Ordinary Differential Equation & Its Applications	6 hrs				
Exact differential equations, Equations reducible to exact form. Linear differential equations,						
Application	ns of Differential Equations to Orthogonal Trajectories, Newton's Law of Cooling	3,				
Kirchhoff's	Law of Electrical Circuits, One dimensional Conduction of Heat					
Unit II	Integral Calculus	6 hrs				
Reduction I	Formulae of standard trigonometric functions, , Beta function, Gamma functions	,				
properties of	of Beta & Gamma function, Differentiation under integral sign					
Unit III	Curve Tracing	6 hrs				
Type I: Pro	perties of Cartesian curve, tracing of Cartesian curve					
Type II: Pro	operties of parametric curves, tracing of parametric curves, Type 3: Properties of	polar				
curves, trac	ing of polar curves, rose curves					
Unit IV	Fourier Series	7 hrs				
Definition,	Definition, Dirichlet's conditions, Full range Fourier series, Half range Fourier series, Harmonic					
analysis, Pa	analysis, Parseval's identity and Applications to problems in Engineering.					
Unit V	Multiple Integration	7 hrs				

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Double Integration: Direct evaluation, limits are not given, transformation to polar & Change of order of integration , Applications to find Area

Triple integrations: Spherical polar coordinate, Cylindrical polar coordinate, Applications to find Volume

Text Book:

1. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi),2019,44th Edition,ISBN No - 978-81-933284-9-1

2. Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Advanced ,2019,35th Edition, ISBN No-13978-0-07-063419-0

Reference Books

1. Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.),2022,10th Edition, ISBN No - 978-81-265-5423-2

2.Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education), 2019,2nd Edition, ISBN No -978-81-7758-546-9

3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017,7th Edition, ISBN 13:978-81-315-1752-9, ISBN 10:81-315-1752-7

Schenc for Theory Examination								
Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-
CO3	2	1	-	-	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-
CO6	2	2	-	-	-	-	-	-	-	-	-	-

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II

Course Code: ESC2401L03, Course Title: Electrical and Electronics Engineering, Category: Engineering Science Course

	Teaching	Evaluation Scheme							
т	т	D			Theory	% Ma	arks	Prac M	tical % arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Mi Mar fo Pass	in rks r sing	Max	Min Marks for Passing
3	0	0	3	CCA	50	20			
39	0	0	Total: 39	ESE	50	20	40	-	-

Prerequisites: Engineering Physics, electron theory, potential and kinetic energy, Diode fundamentals, Transistor.

Course Objectives:

Load.

1 To understand the basic concepts of electrical and electronics engineering.

2 To provide knowledge of D.C circuits, A.C. fundamentals and single phase A.C circuits, structure of Electrical power system and tariff.

3 To understand and apply the knowledge of diodes, Transistors, sensors and logic circuits in the field of engineering applications.

Course Outcomes: After successful completion of the course the student will be able to

	1
CO1	Apply KVL, KCL and different network theorems under DC supply for simplification
	of D.C. networks.
CO2	Analyze pure R, L, C Series R-L, R-C, and R-L-C circuit for voltage, current,
	impedance and power with a.c supply along with phasor diagram.
CO3	Analyze Diode circuits for Rectifier and DC Power supply.
CO4	Apply the knowledge of Transistors as a amplifier, switch and logic gates for adder
	circuits
CO5	Apply different tariffs to calculate electricity hills for Residential and Commercial

Syllabus

Unit I	D.C. Circuits	7 hrs
Classificat	ion of electrical networks, Energy sources - Ideal and Practical vol	tage and
current sou	rces, Simplifications of networks using series and parallel com	binations
and star-d	elta conversion formulae (No Derivation), Kirchhoff's laws and their app	olications
for netwo	rk solutions using Branch current method, Thevenin's theorem, Supe	rposition
Theorem a	nd their applications.	

Unit II	AC Fundamentals & Single Phase AC Circuits	7 hrs

A) A.C. Fundamentals: Mathematical and graphical representation of Sinusoidal voltages and currents, average and r.m.s. values, peak factor and form factor. Concept of phase and Phase difference, lagging, leading and in phase quantities and phasor representation.

B) Single Phase AC Circuits : Study of AC circuits consisting of pure resistance, pure inductance, pure capacitance, series R-L, R-C and R-L-C circuits, phasor diagrams, voltage, current and power waveforms, resonance in series RLC circuits.

Unit I	II Diodes and its Applications	7 hrs
PN Ju	nction Diode: Operation, VI Characteristics, Diode as a switch Rectifier: H	WR and
Bridge	Rectifier. Zener diode: Working and application as a Voltage Regulato	r. Diode
Applic	ation: DC Regulated Power Supply.	
Unit]	V Transistors, sensors and Digital Electronics	7 hrs
BJT: T	ypes, Working & BJT as an Amplifier, Sensor : Introduction and Selection Cri	terion for
sensor	s, Sensor application: LVDT, Review of Number System, Logic Gates, De-	Morgans
Theore	em, Half Adder, Full Adder, Simplification of logical expression for full adder	using K-
map. I	ntroduction to Flip Flop(JK Flip Flop),	
Unit V	7 Electrical Power System & Tariff	7 hrs
A) St	ructure of Electrical Power system :	
Struct	ure of Electrical Power system, Load curve, Concept of Base load and Peak l	oad,
Energ	y conversion	
B) Ta	riff :	
Introdu	action to Tariff, Tariff setting principles, desirable characteristics of Tariff, Re	esidential
and Co	ommercial Tariff, Types of Tariff, Industrial consumers alongwith current e	lectricity
charge	s, Incentives and penalties of Tariff.	
Text B	Books	
1.	B.L. Theraja, A text book on Electrical Technology Vol-I, 1st edition, S Char	1d &
	Company Ltd, New Delhi, ISBN – 81-219-2441-3	
Refere	ence Books	
1.	V.K. Mehta, Rohit Mehata Basic Electrical Engineering, S Chand Publicat Ltd, New Delhi, ISBN - 978-8121908719	tions
2.	D.P Kothari,I.J. Nagrath, Theory and Problems of Basic Electrical Engin 14 th Edition,PHI Publication, ISBN-978-81-203-1263-0	eering,
3.	Thomas L Floyd, Electronic Devises, 10 th edition, Pearson Publication, ISB 1292222 998	N-978-
4.	R P Jain, Modern Digital Electronics 5 th edition Tata McHill Publication.ISB	N-978-
5.	Ramakant Gaikwad, Op-Amp and Linear integrated circuits ,4 th Edition publication ,ISBN – 978-9353949037	, PHI
	NPTEL Video Links https://archive.nptel.ac.in/courses/108/105/108105112/	
	https://youtu.be/Yg6XsepGCKY	
	https://archive.nptel.ac.in/courses/108/105/108105159/	

<u>e.npter.ac.m</u> <u>mups.</u>

http://vlabs.iitkgp.ernet.in/be/index.html# https://nptel.ac.in/courses/117107094

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Tes	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2	1	1		1		1	1			1
CO4	3		1		1							1
CO5	3	2				1	1				1	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester I & II Course Code: ESC2401P06, Course Title: Electrical and Electronics Engineering Lab, Category: Engineering Science Course

		T S	'eaching cheme		Evaluati	on Sch	ieme		
					Theory	% Ma	rks	Practi	cal % Marks
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max %	Min Pas	n for ssing	Max	Min Marks for Passing
0	0	2	1						
	To	tal Ho	ours	CCA	_	-	-	100	40
0	0	26	Total: 26						

Prerequisites: Engineering physics, electron theory, electricity, potential and kinetic energy, Diode fundamentals, Transistor types .

Course Objectives:

1 To make students aware of safety measures and protective devices while working on electrical systems and to analyze A.C and D.C circuits

2 To identify active components, analyze rectifier circuits and logic circuits .

Cours	se Outcomes: After successful completion of the course the student will be able to
CO1	Identify need for safety precautions, Protective devices and Electrical wiring system
	for electric supply.
CO2	Analyze series R-L and series R-C circuit to find various parameters of series AC
	circuit like Voltage, Current, Impedance and Power.
CO3	Design D.C circuits by using different laws and Theorems.
CO4	Analyze the rectifier circuits using source and measuring equipments.
CO5	Design half adder and full adder by using basic gates and verify truth table for Half
	adder and Full Adder.

List of Experiments

Experiment No 1		2 hrs
To study safety preca	utions while working on electrical systems, handling of various	s types of
electrical equipments	, Electrical Wiring systems.	
Experiment No 2		2 hrs
To measure the ste	ady-state response of series RL and RC circuits on AC suppl	y and
	observe voltage and current waveforms.	
Experiment No 3		2 hrs
To verify Kirchhoff's	Voltage Law and Superposition theorem.	
Experiment No 4		2 hrs
To verify Thevenin's t	heorem in a DC network.	
Experiment No 5		2 hrs
To demonstrate different	ent types of electrical protection equipment such as fuses, MCH	3,
MCCB, ELCB, Megge	er.	
Experiment No 6		2 hrs
Study of active compo	nents (Semiconductor components, ICs)	
Experiment No 7		2 hrs

Study of electronic dev	vices (Sources and measuring devices)	
Experiment No 8		2 hrs
Study of Rectifier Circ	cuit	
Experiment No 9		2 hrs
Design and build Half	adder circuits using logic gates	
Experiment No 10		2 hrs
Design and build Full	adder circuits using logic gates	
Reference Books		
1. B.L. Theraja, A	A text book on Electrical Technology Vol-I & II, 1 st edition,S	Chand
& Company Lt	td, New Delhi , ISBN – 81-219-2441-3	
2. V.K. Mehta, Ro	ohit Mehata Basic Electrical Engineering, S Chand Publication	ıs Ltd,
New Delhi, ISI	BN - 978-8121908719	
3. D.P Kothari, I.J	I. Nagrath, Theory and Problems of Basic Electrical Engine	eering,
14 th Edition,PI	HI Publication. ISBN-978-81-203-1263-0	-
4. Thomas L Floy	yd, Electronic Devises, 10th edition, Pearson Publication, ISBI	N-978-
1292222 998		

- 5. R P Jain, Modern Digital Electronics 5th edition Tata McHill Publication.ISBN-978-9355321770
- 6. Ramakant Gaikwad, Op-Amp and Linear integrated circuits ,4th Edition, PHI publication,ISBN – 978-9353949037

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	25	20
e Assessment (CCA)	Evaluation	Involvement, Participation, and Engagement	10		
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

Scheme for Continuous Evaluation

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	1	1	1	2	2	-	1
CO2	3	-	-	-	1	-	-	-	2	2	-	1
CO3	3	1	1	-		-	-	-	2	2	-	1
CO4	3	1	-	-	1	1	-	1	2	2	1	1
CO5	3	-	1	-	-	-	-	-	2	2	-	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester I & II Course Code: ESC2401L08, Course Title: Programming and Problem Solving, Category: Engineering Science Course

Teac	hing Sch	ieme			Evalu	ation Sch	eme		
т	т	D			Theory	% Marks		Practi	cal % Marks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min Mar for Passi	rks ng	Max	Min Marks for Passing
2	0	0	2	CCA	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Prerequisites: Fundamentals knowledge of computer programming.

Course Objectives:This course aims to build the basic introduction of C++ programming language. Purpose of Course are:

- 1. To learn program design tools and .
- 2. To understand the basics of C++ programming and conditional Statements in C++.
- 3. To learn the looping statements and arrays in C++.
- 4. To learn the concepts of strings in C++.
- 5. To learn how to create and implement the functions in C++.

Cours	e Outcomes: After Successful completion of course units, students will
CO1	Use the program design tools like Algorithm, Pseudocode and Flowchart and basic
	concepts of C++ programming to write clean and efficient code for large
	applications.
CO2	Demonstrate the conditional Statements like if statement, if-else statement, if else-if
	ladder, Nested if statement and switch case statement for decision making.
CO3	Apply looping statements and Design C++ programs using arrays to implement the
	data structures.
CO4	Implement C++ programs using string operations and built in string functions for
	data manipulation.
CO5	Develop C++ programs using user defined and built in functions to implement the
	Abstraction in object oriented programming.

Unit I	Introduction to C++ Programming	6 hrs
Introductio	on to Programming, Stages in Program Development, Program Design To	ools:
Algorithm	s, Pseudocode, Flowcharts, Introduction to C++ Programming Language, I	History
of C++ lan	guage, Features of C++, Applications of C++, Simple C++ Program, Inpu	t and
Output sta	tements in C++, Comments, Tokens, Keywords, Variables, constants.	
Unit II	Basics of C++ and Conditional Statements	6 hrs

Unit III	Looping Statements and Arrays in C++	5 hrs
Looping S	Statements: for loop, while loop and do-while loop, break, continue, return	rn.
Introduct	ion to Arrays: Array Concept, declaration, storage representation for array	у,
Initializing	g Array, Types of Arrays- (1-D, 2-D).	[
Unit IV	Strings in C++	4 hrs
Basic oper	rations Strings: Declaration and Initialization, String operations: length, o	copy,
reverse, St	ring built-in function.	
Unit V	Functions in C++	5 hrs
Definition Function Call by Va	a, Calling a Function. Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions.	nctions,
Definition Function Call by Va Text Book	Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions.	nctions,
Definition Function A Call by Va Text Book	A, Calling a Function. Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions.	nctions,
Definition Function 2 Call by Va Text Book 1. E H Pul	Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions.	raw-Hil
Definition Function 2 Call by Va Text Book 1. E H Pul 2. Ro	Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions. <u>Arguments: Formal and Actual Parameters, Parameter passing in fun</u> alue, Call by Reference, Passing arrays to functions. <u>Arguments: Formal and Actual Parameters, Parameter passing in fun</u> alue, Call by Reference, Passing arrays to functions. <u>Arguments: Formal and Actual Parameters, Parameter passing in fun</u> alue, Call by Reference, Passing arrays to functions. <u>Arguments: Formal and Actual Parameters, Parameter passing in fun</u> alue, Call by Reference, Passing arrays to functions. <u>Arguments: Formal and Actual Parameters, Parameter passing in fun</u> <u>alue, Call by Reference, Passing arrays to functions.</u> <u>Arguments: Formal and Actual Parameters, Parameter passing in fun</u> <u>alue, Call by Reference, Passing arrays to functions.</u> <u>Arguments: Formal and Actual Parameters, Parameter passing in fun</u> <u>alue, Call by Reference, Passing arrays to functions.</u> <u>Arguments: Formal and Actual Parameters, Parameter passing in fun</u> <u>alue, Call by Reference, Passing arrays to functions.</u> <u>Arguments: Formal and Actual Parameters, Parameters, Parameter passing in fun</u> <u>Arguments: Formal and Actual Parameters, Parameters, Parameter passing in functions.</u> <u>Arguments: Formal and Actual Parameters, Parameters, Parameter passing in func- <u>Arguments: Formal and Actual Parameters, Par</u></u>	raw-Hil
Definition Function 2 Call by Va Text Book 1. E H Pul 2. Ro Pul	Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions. Salagurusamy, Object-Oriented Programming with C++, 7th edition, McG- blication, 2018, ISBN 10: 9352607996, ISBN 13: 9789352607990. bert Lafore, — Object-Oriented Programming in C++, fourth edition, Sam blishing, 2001, ISBN:0672323087 (ISBN 13: 9780672323089.	raw-Hil
Definition Function 2 Call by Va Text Book 1. E H Pul 2. Ro Pul Reference	Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions. Salagurusamy, Object-Oriented Programming with C++, 7th edition, McGr blication, 2018, ISBN 10: 9352607996, ISBN 13: 9789352607990. bert Lafore, — Object-Oriented Programming in C++, fourth edition, Sam blishing, 2001, ISBN:0672323087 (ISBN 13: 9780672323089.	raw-Hil
Definition Function A Call by Va Text Book 1. E H Pul 2. Ro Pul Reference 1. He	Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions. Salagurusamy, Object-Oriented Programming with C++, 7th edition, McG blication, 2018, ISBN 10: 9352607996, ISBN 13: 9789352607990. bert Lafore, — Object-Oriented Programming in C++, fourth edition, Sam blishing, 2001, ISBN:0672323087 (ISBN 13: 9780672323089. Books rbert Schildt, —C++ The complete reference , Eighth Edition, McGraw Hi	raw-Hil
Definition Function 2 Call by Va Text Book 1. E H Pul 2. Ro Pul Reference 1. He Pro	Arguments: Formal and Actual Parameters, Parameter passing in fun Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions. Salagurusamy, Object-Oriented Programming with C++, 7th edition, McGr blication, 2018, ISBN 10: 9352607996, ISBN 13: 9789352607990. bert Lafore, — Object-Oriented Programming in C++, fourth edition, Sam blishing, 2001, ISBN:0672323087 (ISBN 13: 9780672323089. Books rbert Schildt, —C++ The complete referencell, Eighth Edition, McGraw Hisp ofessional, 2011, ISBN:978-00-72226805.	raw-Hil
Definition Function 2 Call by Va Text Book 1. E H Pul 2. Ro Pul 2. Ro Pul Reference 1. He Pro 2. De	Arguments: Formal and Actual Parameters, Parameter passing in fun Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions. S Balagurusamy, Object-Oriented Programming with C++, 7th edition, McGr blication, 2018, ISBN 10: 9352607996, ISBN 13: 9789352607990. bert Lafore, — Object-Oriented Programming in C++, fourth edition, Sam blishing, 2001, ISBN:0672323087 (ISBN 13: 9780672323089. Books rbert Schildt, —C++ The complete referencell, Eighth Edition, McGraw Hi ofessional, 2011, ISBN:978-00-72226805. itel, "C++ How to Program", 4th Edition, Pearson Education, ISBN:81-29	raw-Hil ns ill 7-0276-
Definition Function 2 Call by V3 Text Book 1. E H Pul 2. Ro Pul Reference 1. He Pro 2. De 2.	Arguments: Formal and Actual Parameters, Parameter passing in fun alue, Call by Reference, Passing arrays to functions. Salagurusamy, Object-Oriented Programming with C++, 7th edition, McG- blication, 2018, ISBN 10: 9352607996, ISBN 13: 9789352607990. bert Lafore, — Object-Oriented Programming in C++, fourth edition, Sam blishing, 2001, ISBN:0672323087 (ISBN 13: 9780672323089. Books rbert Schildt, —C++ The complete referencell, Eighth Edition, McGraw Hi ofessional, 2011, ISBN:978-00-72226805. itel, "C++ How to Program", 4th Edition, Pearson Education, ISBN:81-29	raw-Hil Is ill 7-0276-

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	J T 1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	2	-	-	-	2	2	-	1
CO2	2	2	1	-	2	-	-	-	2	2	-	1
CO3	2	2	1	-	2	-	-	-	2	2	-	1
CO4	2	2	1	-	2	-	-	-	2	2	-	1
CO5	2	2	1	1	2	-	-	-	2	2	-	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II Course Code: ESC2401P10, Course Title: Programming and Problem Solving Lab, Category: Engineering Science Course

	Teaching		Evaluation Scheme						
т	т	р			Theory Marks			Practical Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Max Min for % Passi ng		Max	Min Marks for Passin g
0	0	2	1		-	-		100	10
0	0	26	Total: 26	CCA			-	100	40

Prerequisites: Fundamentals knowledge of computer programming.

Course Objectives: This course aims to build the basic introduction of C++ programming language. Purpose of Course are:

- 1. To learn program design tools and logic development using C++ programming.
- 2. To understand the control structures in C++.
- 3. To learn the concepts of arrays, strings and functions in C++.
- 4. To learn how to solve real world problems using C++.

Cour	Course Outcomes: After Successful completion of course units, students will						
CO1	Demonstrate logic development using basics of C++ programming to write clean and						
	efficient code for large applications.						
CO2	Perform the programs using conditional Statements like ifelse statements, switch						
	Case statements and looping statements in C++ for decision making statements.						
CO3	Create C++ Programs using arrays, strings and functions for Data Structure to						
	manipulate the data.						
CO4	Design real world problems using concepts of C++ Programming for the Game and						
	Application development System.						

	Practical Sessions (Assignments)	26 hrs
1	Write C++ program to swap two numbers.	2 Hr
2	Write C++ program to calculate the salary of an employee given his basic pay (taken as input from the user). Calculate salary of an employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let employees pay professional tax as 2% of total salary. Calculate salary payable after	2 Hr
	Deductions.	
3	Write C++ program to accept a student's five subject marks and compute His/her result. Student is passing if he/she scores marks equal to and above 40 in each course. If student scores aggregate greater than 75%, then the grade	2 Hr

	is a distinction. If aggregate is $60 \ge and < 75$ then the grade of first division. If	
	aggregate is 50 - and <60 then the grade is second division. If aggregate is	
	aggregate is 50^{-2} and <00 , then the grade is second division. If aggregate is	
	$40 \ge$ and <50 , then the grade is third division.	
4	Write C++ Program To Check if the given number is Armstrong Number or	2 Hr
	not.	
5	Write C++ Program to calculate the Average of all the elements present in an	2 Hr
	Array.	
6	Write C++ Program to check if the string is Palindrome or not	2 Hr
7	Write a C++ program the count number of vowels and consonants present in	4 Hr
	the given string.	
8	Write a C++ program to calculate factorial of a given number by using a user	2 Hr
	defined function.	
9	Write C++ Program to check if the given number is Prime or not by using a	4 Hr
	user defined function.	
10	Mini Project	4 Hr
Text	Books	
1.]	E Balagurusamy, Object-Oriented Programming with C++, 7th edition, McGraw-Hill Pu	blication,
	2018, ISBN 10: 9352607996, ISBN 13: 9789352607990.	
2.	Robert Lafore, — Object-Oriented Programming in C++, fourth edition, Sams Publishin	g, 2001,
	ISBN:0672323087 ISBN 13: 9780672323089.	
Refe	erence Books	
1.]	Herbert Schildt, -C++ The complete referencel, Eighth Edition, McGraw Hill Professio	onal,
	2011, ISBN:978-00-72226805.	
2.	Deitel, "C++ How to Program", 4th Edition, Pearson Education, ISBN:81-297-0276-2.	

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e Assessment	Evaluation	Involvement, Participation, and	10		
(CCA)		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

.

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	2	-	-	-	2	2	-	1
CO2	2	2	1	-	2	-	-	-	2	2	-	1
CO3	2	2	1	1	2	-	-	-	2	2	-	1
CO4	2	2	2	1	2	-	-	-	2	2	-	2

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester II Course Code: VSC2402P02, Course Title: Experiential Learning 2 (Common to all), Category: Vocational and Skill Enhancement Course

	Teaching	Evaluation Scheme							
т	т	D	Theory % Mar	ırks	Practical % Marks				
(Hr)	(Hr)	(Hr)	Cr	Exam		Min for			Min
					Max	Pa ng	Passi Max ng I		for Passi ng
0	0	4	2		-				
	Total	Hours		CCA	-	-	-	100	40
0	0	52	Total: 52		-	-			

Prerequisites: No

Course Objectives:

- 1. To demonstrate various safety measures and equipment related to workshop and industry
- To demonstrate various equipment related to workshop 2.
- 3. To use and handle various day to day life equipment
- 4. To apply the MS Office tools for various purposes.

Course Outcomes: After successful completion of the course the student will be able to

- CO1 Gain hands-on experience in using various engineering tools, equipment, and techniques relevant to their field of study or profession
- Analyze plumbing problems, identify potential solutions, and implement CO2 effective problem-solving strategies. Assemble Wood Working Job, Mobile Phone, LCD/LED TV, Domestic Electric CO3 Wiring, Soldering, Welding.
- Understand report and procedures followed for a given task related To MATLAB CO4 Tool.

Syllabus

A) Safety and Safety Equipment/Accessories

An expert session on Shop Floor Safety and Safety Equipment/Accessories 02 hrs **B)** Demonstration

No	Description	Operations	Hrs
1	Plumbing and Molding	Sand Casting, Mould Filling	04
2	3D Printing Machine	Fused Deposition Modelling (FDM)	04
3	Plastic Moulding	Type of Granules and Injection Moulding.	04
		Total hrs	12

First Year (FY) B Tech Semester II

C) Hands on Experience

No	Description	Operations	Hrs
1	WoodWorking Job	Wooden Joints, Pattern Making.	06
2	Mobile Phone	Assembly, Troubleshooting	04
3	LCD/LED TV	Assembly, Troubleshooting	04
4	Domestic Electric Wiring	Plug and Socket Connections and Other	04
		miscellaneous Electrical Parts	
5	Soldering	PCB Soldering	04
6	Welding	Arc Welding, TIG Welding, MIG Welding	08
		Total hrs	30

D) MATLAB

No	Description	Hrs
1	MATLAB commands and operations with applications	08

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e Assessment (CCA)	Evaluation	Involvement, Participation, and	10		
		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

Scheme for Continuous Evaluation

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2						2		3
CO2	2	2			3	2		2		2	2	3
CO3	2	2	2		3	2				2		3
CO4	2	2			3	2	2		2	2		3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II Course Code: HSM2402L02, Course Title: Science and Engineering of Ancient India, Category: Humanities Social Science and Management, Indian Knowledge System (IKS)

	Evaluation Scheme							
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Theory % Marks		Practical % Marks	
					Max %	Min marks for Passing	Max %	Min marks for Passing
2	0	0	2	CCA	100	40	-	
26	0	0	Total: 26					

Prerequisites: Not Required

Course Objectives:

- 1. To introduce the contributions Science and Engineering, ancient Indian systems and traditions to modern word.
- 2. To increase students' awareness in Indian culture and civilization, including its knowledge systems and traditions.
- 3. To help students understand the knowledge, art, creative practices, skills, and values of ancient Indian systems.
- 4. To facilitate the study of India's rich scientific heritage.

Course Outcomes: After successful completion of the course the student will be able to

CO1 Explain Vedic Period, Ancient Indian Science and Engineering

CO2 Demonstrate Concepts of Vedic Mathematics and Astronomy

CO3 Collect Literature of Indian Town Planning and Arts

- CO4 Explain Artha shastra, Indian Agriculture, Religions and Languages
- CO5 Discover Ayurveda for Health, Wellness, Psychology and Spirituality

Syllabus

Unit IVedic Period, Ancient Indian Science and Engineering6 hrsVedic Period: Vedas and their Significance, Upanishads: Philosophy and Knowledge, The Six
Schools of Indian Philosophy: Overview, Indian Linguistics: Panini and Sanskrit
Vocabulary of IKS: Introduction to Pancha Maha Bhutas, Concept of a Sutra, introduction to
the concepts Dharma, Punya, Aatma, Karma, Yagna, Shakti, Varna, Moksha, Loka, Daana,
Puraana, Gurukul System etc. (2 hrs)

Physics: *Vaiśeșika* Sūtra, Concepts of Space, Time, and Consciousness, Concept of Matter and Atom (*Anu*), Laws of Motion and Gravity, Electricity in Ancient India. Introduction to Maharshi *Kanad*, *Aryabhatta*. (2 hrs)

Chemistry: Outline of the contributions of ancient and medieval Indians in the area of chemistry and metallurgy. Case Study of Delhi Iron Pillar. Specific use, processing, and finishing of metals since the vedic times like mercury and zinc. Zinc distillation as mentioned in *Rasārņava*. Bhasma; A nano-medicine of ancient India. Concept of Acid. (2 hrs)

Unit IIVedic Mathematics and Astronomy

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II

Overview of development of Mathematics in India during the ancient and early classical Period. Mathematical references in Vedas. Algorithm for finding the square root. Cube and cubing. Algorithm for finding the cube root. Formula for the area of a triangle. Numerical examples. Approximate value of π , Approximate formula for Rsine (as given by Bhāskara I). Introduction. Importance of Līlāvatī and arithmetical operations. Introduction to Mathematician Srinivasa Ramanujan (1887-1920). (3 hrs)

Astronomy in India Vedang Jyotish, Aryabhatta Siddhanta, Introduction to Varahamihira, Brahmagupta. Vedic calendar based on astronomy. Introduction to Pañcānga and five elements of it, rāśi and nakṣatra division. Concept of Adhikamāsas, concept of Uttarāyaṇa and Dakṣiṇāyana, Concept of Grahanas (Eclipses). Case Study Jantar Mantar, New Delhi. (2 hrs)

Unit IIIIndian Town Planning and Arts5 hrsAncient Indian Architecture: Vastu Shastra and Temple Architecture, Nagara (northern style),
Vesara (mixed style), and Dravida (southern style), Indian vernacular architecture, Temple
style, cave architecture, rock cut architecture, Kalinga, Chandels, Rajput, Jain, Sikh, Maratha,
Indo-Islamic architectural, Greco Buddhist style. Harappan Town Planning. Ancient Indian
Craftsmanship (3 hrs)

Introduction to Indian Music and Musical Instruments: Swaras and Ragas, Veena, Ghatam, Flute, *Mridangam*, Harmonium, Sitar, Sarod, Shehnai, Tabla, Maddalam, Introduction to Indian Dances: *Bharatnatyam*, *Kuchipudi*, *Kathakali* etc. Indian Classical Dance (2 hrs)

Unit IVArtha shastra, Indian Agriculture, Religions and Languages5 hrsTrade and Commerce in Ancient India, Arthashastra (2 hrs).

Ancient Indian Farming Practices, Role of Nakshatra and Agnihotra on Agriculture. Harappan and Traditional Water Management System of Gujarat. Soil Preparation, irrigation, Crop Protection (1 hr).

Ancient Indian Religions and Modern Indian Languages, Introduction to Ancient Indian Warfare and Weaponry (2 hrs)

Unit VAyurveda for Health, Wellness, Psychology and Spirituality5 hrsCharak& SushrutSamhita,Ayurveda:PrinciplesandPractices,Understanding composition of Human body through the concept of Dosha, Dhatu, Mala,Understanding Prakruthi, the Mind – Body Constitution (3 hrs).SubscriptionSubscription

Definition, Meaning and objectives of Yoga, Relevance of yoga in modern age. Introduction of Hatha Yog, Raja Yog, Karma Yog, Gyana Yog, Bhakti Yog. Understanding eight steps of Ashtanga yoga, Understanding Consciousness (2 hrs).

Reference Books

- Guidelines for Training/Orientation of Faculty on Indian Knowledge Systems, Published by: Secretary, University Grants Commission, Bahadur Shah, Zafar Marg, New Delhi-110002
- Introduction to Indian Knowledge System: Concepts and Applications, Mahadevan, B., Bhat, Vinayak Rajat, Nagendra Pavana R.N., Publisher PHI Learning Pvt. Ltd., 2022, ISBN 9391818218, 9789391818210.
- Vaisesika Sutra of Kanada, Translated by Debasish Chakravarty, D K Print World, ISBN 9788124602294
- 4. Līlāvatī of Bhāskarācārya: A Treatise of Mathematics of Vedic Tradition: with Rationale in Terms of Modern Mathematics Largely Based on N.H. Phadke's Marāthī Translation of

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II

Līlāvatī, Translated by Krishnaji Shankara Patwardhan, Publisher Motilal Banarsidass Publishe, 200, ISBN 812081777X, 9788120817777

- 5. Aspects of History of Agriculture in Ancient India, Author: Lallanji Gopal, Publisher: Bharati Prakashan, 1980
- 6. Light on Yoga: The Classic Guide to Yoga by the World's Foremost Authority, Author B. K. S. Iyengar, Publisher Harper Collins India, 2006, ISBN 8172235011, 9788172235017
- 7. Chopra, D. (2000). Perfect Health: The Complete Mind Body Guide.: Three Rivers Press.
- 8. Lad, Vasant. Ayurveda: The Science of Self-healing: a Practical Guide., Motilal Banarsidass, 2002.

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
e Assessment	Evaluation	Involvement, Participation, and	10		
(CCA)		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	-	-	-	-	-	3	-	-	-	-	-	3
CO2	-	-	-	-	-	3	-	-	-	-	-	3
CO3	-	-	-	-	-	3	-	-	-	-	-	3
CO4	-	-	-	-	-	3	-	-	-	-	-	3
CO5	-	-	-	-	-	3	-	-	-	-	-	3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech in Artificial intelligence and Data Science, Semester II First Year (FY) B Tech Semester II Course Code: LLC2402P02, Course Title: Liberal Learning II (Common to All), Category: Co-curricular Course

	Teaching Scheme					Evaluation Scheme					
т	т	D	Cr		Theory % Marks			Practical % Marks			
(Hr)	(Hr)	(Hr)		Exam	Max	Min Pas ng	for ssi	Max Min Max for Passi ng			
-	1	2	2								
Total Hours			CCA	_	_	-	100	40			
-	13	26	Total: 39								

Prerequisites: Course Code							
Course Objectives:							
1. To promote the holistic development of students through engagement various extra-							
curricular activities.							
2. To enhance students' life skills through individual and group activities.							
Course Outcomes: After successful completion of the course the student will be able to							
CO1 Demonstrate linguistic fluency in foreign or native languages through studying							
the cultural and historical contexts related to their chosen discipline, understanding							
its evolution, traditions, and the role it plays within various cultural settings and							
narratives.							
CO2 Demonstrate enhanced ability to creatively express themselves and effectively							
communicate ideas, emotions, and, or by creating innovative and artistic art pieces.							
CO3 Express creativity and individuality through their work, whether through artistic							
creations, musical performances, or athletic activities, and present and perform their							
skills confidently in various settings.							

Unit 1	Marathi Language	13hrs							
	History and significance of Marathi								
	Overview of the historical development of Marathi								
	• Importance in ancient texts, literature, and cultural heritage								
	Phonetics and pronunciation								
	Pronunciation of vowels and consonants								
	Practice with phonetic drills								
	Basic Grammar								
	Vocabulary building								
	• Everyday vocabulary: greetings, numbers, common objects								
	Basic conversational phrases								
Unit 2	Art (Sketching colouring and Wire-art)	13hrs							
	• Art History: Studying the history of painting and sketching to								
	understand different styles and movements								

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Y	ear (FY) B Tech in Artificial intelligence and Data Science, Semester	r II
	 Fundamentals of Drawing: Basic techniques such as line, shape, form, and perspective. Basic principle of Design & Drawing: twelve principles of design. Colour Theory: Understanding the colour wheel, mixing colours, and using colour harmonies. Watercolor Techniques: Techniques specific to watercolor painting, such as wet-on-wet and dry brush. Introduction to Wire Art, tools used, Drawing and visualization of figure Bending, forming and twisting of wire , Introduction of 3D Wire Art 	
Unit 3	Sports (Outdoor)	13 hrs
	 Importance of physical activity for engineers Cardiovascular fitness, Strength training, Flexibility and balance exercises Introduction to various outdoor sports Rules and basic skills of outdoor sports Team-building activities and games. Importance of sportsmanship and ethical behavior in sports Leadership and communication in sports Matches 	

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
e Assessment	Evaluation Involvement, Participation, and		10		
(CCA)		Engagement			
		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	CO1	2								2	2	
CO2	CO2	2								2	2	
CO3	CO3	2								2	2	

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech in Artificial intelligence and Data Science, Semester II Course Code: AID2402L01, Course Title: Python for Data Science, Category: Program Core Course

	Teaching		Evaluation Scheme						
т	т	Đ			Theor	y Mar	ks	Pra Ma	ctical arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min marks for Passing		Max %	Min marks for Passing
2	0	0	2	CCA	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Prerequisites: ESC2401L08 – Programming & Problem Solving

Course Objectives: Purposes of the course are

- 1. Equip students with foundational Python programming skills, including syntax, data types and control structures.
- 2. Familiarize students with essential data structures in Python such as lists, tuples, dictionaries, and sets.
- 3. Develop students' proficiency in creating and using functions, modules, and packages in Python programming.
- 4. Introduce students to key data manipulation and analysis libraries.
- 5. Introduce students for efficient handling, analysis, and manipulation and visualization of data.

Cou	Course Outcomes: After successful completion of the course units the student will								
CO 1	Demonstrate proficiency in basic Python syntax, data types, and control structures.								
CO 2	Use and manipulate python data structures, functions, packages and modules.								
CO 3	Analyze the structure and components of a Python package and understand the module search path.								
CO 4	Understand the fundamentals of data science and its applications.								
CO 5	Create informative data manipulation for visualization using python libraries.								

Unit I	Introduction to Python Programming	Introduction to Python Programming 6 hrs								
Introduction to Python and its features, Python installation and setup (Anaconda, Jupyter Notebook)										
Basic Pytl	non syntax: variables, data types, operators, and expressions, Control structure	s: if-else								
statements	, loops (for and while), and conditional statements									
Unit II	Python Data Structures	6 hrs								

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech in Artificial intelligence and Data Science, Semester II Lists: creation, indexing, slicing, and operations, Tuples: creating, accessing elements, and tuple operations, **Dictionaries:** creating, accessing elements, and dictionary methods, **Sets:** creating, adding/removing elements, and set operations. **Functions and Modules in Python** Unit III 6 hrs Functions: defining functions, function arguments, return statements, and lambda functions. Modules and packages: creating modules, importing modules, and using built-in modules. **Unit IV** 4 hrs Fundamentals of data science, applications of data science, Numpy array. Introduction to NumPy arrays: creating arrays, indexing, slicing, and array operations. Pandas Series: creating Series, indexing, accessing elements. Unit V 4 hrs **Pandas and Matplotlib** Pandas Data Frames: creating Data Frames, data manipulation. Matplotlib: line plots, scatter plots **Reference Books: -**1. "How to Solve it by Computer", R. G. Dromey, Pearson Education India; 1st edition, ISBN-10: 8131705625, ISBN-13: 978-8131705629. 2."Problem Solving and Programming Concepts", Maureen Spankle, Pearson; 9th edition, 2011, ISBN-10: 9780132492645, ISBN-13: 978- 0132492645. 3."Learning Python", Romano Fabrizio, Packt Publishing Limited, 1st edition, 2015, ISBN: 9781783551712, 1783551712. 4."Head First Python- A Brain Friendly Guide", Paul Barry, SPD O'Reilly, 2nd edition, 2016. ISBN:978-93-5213-482-3. 5. "Python: The Complete Reference", Martin C. Brown, McGraw Hill Education, 4th edition-2018, ISBN-10:9789387572942, ISBN-13: 978-9387572942. Text Book: -1. "Python Programming Using Problem Solving Approach" Reema Thareja, Oxford University Press, First edition, 2019, ISBN 13: 978-0-19-948017-6. 2. "Core Python Programming", R. Nageswara Rao, Dreamtech Press; Second edition, 2018 ISBN- 10: 938605230X, ISBN-13: 978-9386052308 ASIN: B07BFSR3LL Swayam / NPTEL/MOOC Course: -1. "Python for Data Science" by Prof. Ragunathan Rengasamy IIT Madras. 2. "Python for Data Science" - Infosys Springboard. YouTube Link: -1. Python Data Science Tutorial | Simplilearnhttps://www.youtube.com/watch?v=mkv5mxYu0Wk 2. Learn Python libraries - https://www.youtube.com/watch?v=LHBE6Q9XlzI

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Tes	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech in Artificial intelligence and Data Science, Semester II

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	2	-	-	-	-	-	-	1
CO2	2	2	2	1	3	-	-	-	-	-	-	1
CO3	2	2	2	1	3	1	-	-	1	-	1	1
CO4	2	2	2	1	3	1	1	1	1	1	1	1
CO5	2	2	1	-	2	1	-	-	-	-	-	2

CO-PO Mapping

3: High, 2: Moderate, 1: Low, -: No Mapping *****

Course Code: CVE2402101, Course Title: Basics of Civil Engineering Category: Program Core Course

	Teaching	g Scheme		Evaluation Scheme						
т	т	D			Theor	y Mar	ks	Pra M	ctical arks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Mi mai fo Pass	in rks r sing	Max %	Min marks for Passing	
2	0	0	2	CCA	50	20				
26	0	0	Total: 26	ESE	50	20	40	-	-	

Prerequisites: No

Course Objectives: Purposes of the course is,

the building process.

- 1. To use basic Civil Engineering knowledge in nation development.
- 2. To become acquainted with real-world construction materials used for building components.
- 3. To be aware of modern equipment's used in surveying.

Course Outcomes: After successful completion of the course, students will be able to,

	1 , , , , , , , , , , , , , , , , , , ,
CO1	Describe the importance of various branches and interdisciplinary approach in Civil
COI	Engineering for enormous understanding
CO^{2}	Identify and utilize construction materials, concrete types, and sustainable practices
002	for effective building construction.
CO3	Identify and describe the various types of foundations and superstructures
CO4	Discuss the importance of surveying, leveling to understand topography
CO5	Interpret the application of various construction equipment and automation technologies in

Unit I	Introduction of Civil Engineering:	5 hrs						
A) Important	A) Importance of civil engineering in society, branches of civil engineering, basic units used							
in civil engir	neering and its conversion							
B) Importance	ce of interdisciplinary approach in civil engineering							
Unit II	Materials	6 hrs						
Basic materia	Basic materials for construction: Cement, bricks, stone, natural and artificial sand, steel- mild,							
tor, high tens	ile steel. Concrete types - PCC, RCC, pre-stressed and pre-cast, Intr	oduction to						
RMC plant, fu	undamental requirements of masonry, introduction to sustainable mater	ials.						
Unit III	Introduction to Construction	5 hrs						
A) Substructure: definition and function of foundation, Types of foundation (only Concept)								
B) Superstructure - load bearing and framed								
Unit IV	Introduction to Surveying	6 hrs						

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

	-	
A) Introd	uction to Surveying-Types, Principles, Applications.	
B) Introdu	action to levelling- HI, Rise and Fall method with change point.	
C) Introdu	action to contour map	
Unit V	Construction Equipment's and Automation	4 hrs
A. Con	struction Equipment-Introduction to Excavator, Paver Machine, Tower	crane.
B. Intro	luction to Automation in Construction- Concept, Need, Examples related to	o different
civil eng	ineering projects	
Referen	ce Books	
1.	Basic Civil and Environmental Engineering by C.P Kaushik, S.S. Bahavikatti, An Kaushik, Edition 2018	ubha
2.	Surveying by N.N. Basak, Edition 2014 Tata Mc-Graw Hill	
3.	Building Construction and Drawing- Bindra and Arora, Edition 2012, Dhanapat F	Rai
	Publications.	
4.	Shah M.G., Kale C. M., Patki S. Y., "Building Drawing with an integrated approa	ich to
_	Built Environment", Tata McGraw-Hill publication, 2012.	
5.	Kanetkar T. P., Kulkarni S. V., "Surveying and Levelling (Vol.	I)", Pune
-	VidyarthiGrihaPrakashan, 2006.	
6.	Building Construction by Arora S.P. and Bindra S.P. – Dhanpatrai and Sons publi Delhi. Edition 2016	cations,
7.	National Building Code by Bureau of Indian Standards (2000)	
8.	Water Supply Engineering by S.K. Garg, 33rd edition 2019, Khanna Publishers, I	Delhi
9.	Highway Engineering by Khanna, C.E.G Justo, A.Veersrsgavan, Edition 2018, No	em
	Chandand Bros Publication.	
10.	Irrigation and Water Power Engineering by B. C. Punmia, 16th edition 2019, Lax	mi
	Publications.	
NPTEL	Link:	
1.	https://onlinecourses.nptel.ac.in/noc22_ce42/preview	
2.	https://nptel.ac.in/courses/105107122	

Scheme for Theory Examination								
Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	1										
CO2	3	1										
CO3	3	1										
CO4	3	1										
CO5	3	1										

First Year (FY) B Tech in Computer Engineering, Semester II Course Code: CPE2402L01, Course Title: Object Oriented Programming, with C++, Category: Program Specific Core Course

	Teaching	g Scheme		Evaluation Scheme						
т	т	D			Theor	y Mar	ks	Practi Ma	ical % Irks	
(Hr)	(Hr)	(Hr)	Cr	Exa m	Max %	Min Pa g	for ssin	Max	Min marks for Passin g	
2	0	0	2	CCA	50	20				
26	0	0	Total: 26	ESE	50	20	40	-	-	

Prerequisites: ESC2401L08- Programming and Problem Solving

Course Objectives:

The course provides the basic foundations and in-depth understanding of object oriented Programming to develop programming skills which help students in software development.

- To understand the object-oriented programming paradigm and OOP concepts
- To understand and learn the basic constructions of C++
- To learn how inheritance and polymorphism work in C++
- To learn how to use file to maintain records with C++

Course Outcomes: After successful completion of the course the student will be able to

CO1	Understand and apply basic object-oriented concepts to provide solutions for simple
	system.
CO2	Design and implement a program to demonstrate use of Inheritance in real time
	systems.
CO3	Develop an application using polymorphism for solving any complex problem.
CO4	Understand and use Pointer concept to implement Run Time Polymorphism
COS	Apply file handling concept for creating software applications
COS	Appry me naturing concept for creating software applications.

Unit I	Fundamentals of Object Oriented Programming	6 hrs						
Procedure Oriented Programming (POP) verses Object Oriented Programming (OOP), Object								
Oriented P	Programming (OOP) Concepts							
C++ progr	camming: Classes, Objects, array of object, Member functions, access sp	pecifiers,						
friend fun	ctions, friend class, static variables, static functions, inline function, this	s pointer,						
Namespac	es, Constructor- Types of Constructors: Default constructor, Paran	neterized						
constructo	r, Copy Constructors, Destructors, Unit testing							
Unit II	Inheritance	5 hrs						
Inheritance	e- Basic Concept, base class and derived class, protected members, Constru	uctor and						
destructor	destructor in Derived Class, Types of Inheritance, Overriding Member Functions, Public and							
Private Inh	Private Inheritance, Ambiguity in Multiple Inheritance, Virtual Base Class, Abstract Class							
Unit III	Compile Time Polymorphism	5 hrs						

Introduction to Polymorphism,	Types	of	Polymorphism,	operator	overloading,	Overloading
Binary Operators, Function over	rloadin	g,				

Dillary C	perators, runedon overloading,	
Unit IV	Pointer and Run Time Polymorphism	5 hrs
Pointers:	Declaring and initializing pointers, modify pointers, pointer arithmetic, a	accessing
Array us	ng pointer, Arrays of Pointers,	
Run time	polymorphism - Pointers to Base class, virtual function and its significance	e in C++.
Unit V	Files	5 hrs
Stream a	nd files, Stream Classes, Stream Errors, Disk File I/O with Streams, File Point	nters, and
Error Ha	ndling in File I/O, File I/O with Member Functions, Overloading the Extra	ction and
Insertion	Operators, Command-Line Arguments	
Text Bo	oks :	
1. R	obert Lafore, "Object-Oriented Programming in C++", 4th edition, Sams Pu	ublishing,
2	008, ISBN:0672323087 (ISBN 13: 9780672323089	
2. E	. Balagurusamy, "Object-Oriented Programming with C++", 8th	^h edition,
C	raw-Hill Publication, 2020, ISBN 10: 9352607996 ISBN 13: 97893526079	90
Referen	e Books :	
1. H	erbert Schildt, "C++ The complete reference", 4th Edition, McGraw Hill Pro	fessional,
2	017, ISBN:978-00-72226805	
2. Y	ashwant Kanetkar, "Let Us C++", 17th Edition BPB Publications, 2020, IS	BN-10 :
Ģ	388176642	
3. R	ichard Grimes, "Beginning C++ Programming", Packt Publishing Ltd., 201	7, ISBN
9	78-1-78712-494-3	
e-Conte	nts :	
1. N	PTEL Course on Programming in C++	
h	ttps://onlinecourses.nptel.ac.in/noc21 cs02/preview	
2. N	PTEL Course on Programming in Modern C++	
h	ttps://onlinecourses.nptel.ac.in/noc24_cs44/preview	

3. Programming in C++ https://www.shiksha.com/online-courses/programming-in-c-bynptel-course-nptel23

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Assessment	Faculty	5	5	5	5	5	25	20
	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	2	2	3	2	1	2	3	3	1	3
CO2	3	3	3	3	3	3	1	2	3	3	1	3
CO3	3	3	3	3	3	3	1	2	3	3	1	3
CO4	3	3	3	3	3	3	1	2	3	3	1	3
CO5	3	3	3	3	3	3	1	2	3	3	1	3

CO-PO Mapping

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech in Electronics and Telecommunication Engineering, Semester II Course Code: ETE2402L01, Course Title: Semiconductor Devices and

Sensors, Category: Program Specific Core Course

	Teaching Scheme					Evaluation Scheme					
L (Hr)	L T P (Hr) (Hr) (Hr)			Exam	Theory Marks		Practica l Marks				
	(Hr)				Max %	M Ma fo Pass	in rks r sing	Max	Min Marks for Passin g		
2	0	0	2	CCA	50	20					
26	0	0	Total: 26	ESE	50	20	40	-	-		

Prerequisites: Engineering Physics, ESC2401L03

Course Objectives: After successful completion of the course the student will be able to:

1. To impart knowledge of Diodes and Transistors with their characteristics and applications.

- 2. To design and configure combinational and sequential logic circuits.
- 3. To build a sensor based control system.

Course Outcomes :Student will:

CO1	Select rectifier diode for design of DC power supply, LED and Photodiode for opto
	coupler circuits in counting applications.
CO2	Relate BJT, JFET and MOSFET for amplification and switching actions.
CO3	Design combinational circuits like MUX, De-MUX, Encoder, Decoder
CO4	Design Sequential Circuits Like Parity Generator, Shift Registers and Counters for
	Digital Applications
CO5	Analyze proximity sensors for touch switches in consumer electronics, RTD for food
	processing unit and load cell for electronics weighing machine.

Unit I Diode and Applications	6 hrs						
Diode current equation, Rectifier circuits with and without filter, Parameters of Rectifier circuits: Average and RMS values, Ripple factor, TUF, Rectification efficiency, Diode as clipper and clamper. Line regulation and load regulation, Working and application of Photodiode and LED.							
Unit II Transistor	5 hrs						
BJT construction, configuration, operating modes and characteristics, Load line concept, Selection of operating point for faithful amplification. Introduction to JFET, DMOSFET and E MOSFET.							
Unit III Digital Electronics I (Combinational Circuits)	5 hrs						
Boolean Algebra and Standard representation of logical expression. Simplification of logic function (K map), Multiplexer, De multiplexer, Encoder, Decoder,							
Unit IV Digital Electronics II(Sequential Circuits)	5 hrs						
Even Parity, Odd Parity, Parity Generator, Shift Registers: SISO, SIPO, PISO, PIP Counters :Asynchronous counter: Ring counter, Johnson counter, synchronous mod counter.	O, N						
Unit V Sensors	5 hrs						
Strain Gauge and Load cell, Proximity sensor: capacitive, inductive, ultrasonic, pho Temperature Sensors: Thermocouple RTD and Thermistor.	otoelectric,						
Reference Books							
1.Thomas Floyd, "Electronics Devices", Prentice hall, 10th Edition, 2018, I 1292222998	SBN-978-						
2. R.P. Jain, "Modern Digital Electronics", Tata McGraw Hill Publication, 5th Edition 2022, ISBN- 978-9355321770.							
3.D. Patrnabis, "Sensors and Transducers", PHI Learning, 2nd edition, 2003, IS 8120321984	BN- 978-						

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Assessment	Faculty	5	5	5	5	5	25	20
	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12
CO1	3	2	3	-	-	-	-	-	1		-	1
CO2	3	-	-	-	-	-	-	-	1	1	-	1
CO3	3	2	2	1	-	-	-	1	1		-	1
CO4	3	2	2	-	2	1	1	1	1	2	1	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech in Information Technology, Semester II Course Code: INT2402L0, Course Title: Fundamentals of Java Programming, Category: Program Core Course

	Teaching Scheme				Evaluation Scheme					
т	т	D			Theory % Marks			Practical % Marks		
(Hr)	(Hr)	(Hr)	Cr	Exa m	Max	Min Pa g	for ssin	Max	Min for Passing	
2	0	0	2	CCA	50	20				
26	0	0	Total: 26	ESE	50	20	40	-	-	

Prerequisites: ESC2401L08, Basics of C/C++ Programming

Course Objectives: This course aims to build the basic introduction of Java programming language. Purpose of course are:

- 1. To learn object oriented program concepts and fundamentals of Java Programming.
- 2. To understand the concepts of classes and objects in Java Programming.
- 3. To learn the concepts of classes and objects in Java Programming.
- 4. To understand the concepts of exceptional handling in Java Programming.
- 5. To learn the concepts of multithreading in Java Programming.

Cours	se Outcomes: After successful completion of the course the student will be able to
CO1	Apply the fundamental concepts of Java programming language including
	variables, data types, control structures, and methods.
CO2	Use the concepts of classes, objects, members of a class and the relationships
	among
	them to write a code for finding the solution to specific problems.
CO3	Demonstrate how to extend java classes and achieve reusability using Inheritance
	and
	Interfaces.
CO4	Apply the concepts of Exceptional handling to develop efficient and error free
	codes.
CO5	Construct robust and faster programmed solutions to problems using the concept of
	Multithreading.

Unit I	Fundamentals of Java	6				
		hrs				
Overview of procedure and object-oriented Programming, Open Source Platform Features						
of Java L	of Java Language. Introduction to the principles of OOP: Classes, Objects, Abstraction,					
Encapsulation, Inheritance, Polymorphism. Keywords, Data types, Variables, Opera						
Expressio	ons. Control Statements and Iteration Statements.					
Unit II	Classes, Objects, Arrays and Strings	6				
		hrs				

Classes & Objects: Class Fundamentals: Assigning Object Reference Variables, Parameter passing for methods, Nested and Inner Classes. Constructors: Parameterized Constructors, Method overloading, Constructors overloading, Recursion, **String**: String functions. **Arrays**: One Dimensional array, Two Dimensional arrays.

Unit III Inheritance and Interfaces

6 hrs

hrs

Inheritance: Inheritance and its types, Concept of Super and subclass, inheriting Data members and Methods, making methods and classes final, Method overriding. Abstract classes, and methods. **Interfaces:** Defining an interface, extending interfaces, implementing interfaces, Interfaces vs. Abstract classes.

Unit IV	Exception Handling	4				
		hrs				
Exceptions: Need for exceptions, Checked Vs Unchecked exceptions, creating custom						
exceptio	ns.					
Unit V	Multithreading	4				

Multithreading: Introduction, Priorities and scheduling, Inter-thread communication,	,
Thread Synchronization and its life cycle. Thread class Methods, Implementing	
Runnable, Extending thread .	

Reference Books

1. Herbert Schildt, "Java-The Complete Reference", Tenth Edition, Oracle Press, Tata McGraw Hill Education.

2. Anita Seth, B.L.Juneja, "Java : One Step Ahead", oxford university press.

3 D.T. Editorial Services, "Java 8 Programming Black Book", Dreamtech Press 2. Learn to Master Java by Star EDU Solutions

4.Core Java Volume I-Fundamentals "Cay S. Horstmann", 11th Edition

Text Books

1. Yashvant Kanetkar, "Let Us Java" 4th Edition ,BPB Publications.

2.E. Balguruswamy, "Programming with Java A primer", Fifth edition, Tata McGraw Hill Publication

NPTEL link:

https://onlinecourses.nptel.ac.in/noc22_cs47/preview https://youtu.be/OjdT2l-EZJA?si=7YQM7RtLIH5Cj6ET https://youtu.be/J_d1fJy90GY?si=h7z55TbwDy3Td XJW

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Tes	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	1	-	-	-	-	-	-	2
CO2	2	2	2	1	1	-	-	-	-	-	-	2
CO3	2	2	1	-	1	-	-	1	1	-	-	2
CO4	2	2	2	1	2	-	-	-	-	1	1	2
CO5	2	2	1	1	2	1	1	-	-	1	-	2

3: High, 2: Moderate, 1: Low, 0: No Mapping

First Year (FY) B Tech in Instrumentation and Control Engineering, Semester II Course Code: ICE2402L01, Course Title: Measurements in Instrumentation, Category: Program Specific Core Course

		Teaching	g Scheme		Evaluation Scheme								
	r	т	P			Theor	ry % Mark	KS	Pra % N	ctical ⁄Iarks			
(E	Ir)	(Hr)	(Hr)	Cr	Exam	Max %	Min Marks f Passing	Min Marks for Passing		Min marks for Passing			
	2	0	0	2	CCA	50	20						
2	26	0	0	Total: 26	ESE	50	20	40	-	-			
Prere	equisites: ESC2401L03.												
Cours	Irse Objectives: Purposes of the course are												
1.	To st	udy of meas	uring instrur	nents used i	n Instrum	entation	and Cont	rol E	ngine	ering.			
2.	To ur	nderstand the	e various par	ameters usi	ng electric	al and e	electronic	meas	sureme	ents.			
3.	Oscil	loscope and	its usage for	r various me	easuremen	ts in Ins	strumentat	ion A	Applic	ations.			
Cours	se Out	comes: Afte	r successful	completion	of the cou	irse unit	ts the stude	ent w	vill				
CO1	Analy	ze static and	l dynamic ch	aracteristic	s of measu	irement	instrumen	ts lik	ce volt	meters			
	and a	mmeters for	analysing lo	ading effec	t.								
CO2	Meas	ure resistanc	e, capacitano	ce and induc	ctance of e	lectrical	l circuits fo	or sig	gnal ar	nalysis.			
CO3	Analy	ze measure	ments like	voltage, cui	rrent, freq	uency,	phase of e	elect	rical o	circuits			
	using	cathode ray	oscilloscope	e for signal	conditioni	ng requ	irements.						
CO4	Use e	electronic in	struments fo	or analog a	nd digital	measu	rements for	or se	ensors	signal			
	condi	tioning.											
CO5	Use r	ecording ins	truments for	r recording	and analy	zing va	rious proc	ess a	nd ele	ectrical			
	signal	ls											

Syllabus

Unit I	Fundamentals of Measurements	6 hrs									
General	Measurement System, Classification of Instruments, Static and	Dynamic									
characteris	stics of instruments, Error: limiting error, Types of Errors. Loading effe	ct: Input									
impedance, output impedance, loading effects of series and shunt connected instruments,											
Calibration	Calibration: Definition, calibration report & certification, traceability and traceability chart.										
Unit II Electrical Measurement 7 hrs											
General fe	General features and Classification of electro mechanical instruments. Principles of Moving										
coil, movi	ng iron, dynamometer type. Low, high and precise resistance measurement,	, Megger,									
Ohmmeter	rs, Classical AC bridges: Inductance and capacitance measurements.										
Unit III	Oscilloscopes	7 hrs									
General purpose oscilloscope Block Diagram, Cathode Ray Tube, deflection sensitivity, front											
panel controls, Oscilloscope Probes 1:1 and 10:1, Dual trace CRO, ALT and CHOP modes,											
measurem	measurement of electrical parameters like voltage, current, frequency and phase, frequency										
measurem	ent. Demonstrations of Oscilloscope. Digital Storage oscilloscope block	diagram,									
sampling r	ate, bandwidth, roll mode.										

Unit IV Electronic Measurements

Essentials of electronic instruments, advantages of electronic instruments, Electronic Multimeters, Analog and digital multi-meters, Digital frequency meters. Digital LCR meter, Q-Meter, Digital wattmeter and energy meters.

Unit V Recording Instruments

6 hrs

Classification of recorder, Basic Strip chart recorder, Types of Strip chart recorder, XY Recorder, Different marking mechanism in recorder, Application of recorders

Reference Books

- 1. A. K. Shawney, A course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai and Sons, 2015.
- 2. H. S. Kalsi, Electronic Instrumentation, McGraw Hill Education; 3rd Edition, 2017.
- 3. Albert D. Helfrick, William D. Cooper, Modern Electronic Instrumentation and Measurement Techniques, 1st Edition, Pearson, 2016.
- 4. Ernest O Doebelin and Dhanesh N Manik, MeasurementSystems: Application and design, McGraw Hill publication, 5th Edition.
- 5. David A. Bell, Electronic Instrumentation and Measurements, Oxford University Press India; 3rd Edition.

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Comprehensive	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Tes	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	-	-	1	-	1	-	1	2
CO2	3	2	-	1	-	-	-	-	-	1	1	3
CO3	3	2	1	-	1		-	-	-	-	1	2
CO4	2	2	-	-	-	1	-	1	-	1	1	2

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

Course Code: RNA2402L02, Course Title: Elements of Mechanical Engineering, Category: Programme Specific Core Course

	Teaching	g Scheme		Evaluation Scheme						
T	т	D			Theory Marks			Practical Marks		
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Mi Mar fo Pass	in rks r	Max	Min Marks for Passing	
2	0	0	2	CCA 50 20						
26	0	0	Total: 26	ESE	50	20	40	-	-	

Prerequisites: Physics, Mathematics, Electrical

Course Objectives:

1. To provide students with a solid understanding of the fundamental properties of fluids and the various types of fluid flows.

To enable students to explain the environmental and economic impacts of electric vehicles.
 To familiarize students with different manufacturing processes, and to recognize safety measures in cutting processes.

4. To enable students to explain and differentiate between various additive manufacturing techniques

Course Outcomes: After successful completion of the course the student will be able to										
Analyze and solve problems related to fluid properties, statics, and dynamics in										
engineering contexts.										
Understand the structure, components, and economic aspects of electric vehicles.										
Describe various manufacturing processes and identify associated safety measures and										
defects.										
Demonstrate rapid prototyping techniques and their applications in modern										
manufacturing.										
Demonstrate appropriate level of knowledge of Additive Manufacturing process										

Unit I Fluid Engineering	6 hrs							
Introduction to Fluid Engineering, Properties of Fluids, types of fluids. Fluid static	s:							
measurements of pressure and flow. Fluid Dynamics: Types of Fluid Flows,								
Bernoulli's								
Equation, Momentum Equation. Fluid properties, pressure, density and viscosity, viscous								
and turbulent flow, pump and compressor.								
Unit II Electric Vehicle	7 hrs							
Overview of Electric Vehicles, Environmental and Economic Impact, Electric	Vehicle							
Components, electric Vehicle Drivetrain, Charging infrastructure and technolog	gy, Cost							
Analysis of production.								
Unit III Basic Manufacturing Processes	7 hrs							

Introduction to manufacturing, Classification of Manufacturing processes, Introduction to Carpentry, Lathe, milling and drilling, Micromachining, Grinding and finishing processes. Safety measures in cutting processes. Machining Defects in mentioned processes.

Unit IV	Introduction – Additive Manufacturing	6
		hrs
Overvi	ew – History – Need-Classification -Additive Manufacturing Technology in	
produc	t development Materials for Additive Manufacturing Technology – Tooling	_
Applic	ations	
Unit V	Rapid Prototyping	6
		hrs
Overvie	w of Rapid Prototyping, Classification of RP, Materials for RP, Stereo lithog	graphy,
3D Prin	ing, Selective Laser Sintering, Fusion Deposition Modelling, 7 AM Steps of	lefined
by AST	M	
Referen	ce Books	
1. Bans	al R.K., "Fluid Mechanics and Hydraulic Machines", 9th Edition, Laxmi	
Publ	cation, 1990, ISBN 81-7008-311-7.	
2. Khu	mi R. S. and Gupta J. K., "Textbook of Refrigeration and Air Conditioning"	', S.
Char	d and Co.	
3. Jain	R.K., "Production Technology", Khanna Publishers, ISBN 81-7409-099-1.	
4. Rao	P.N.," Manufacturing Technology & Foundry, Forming & Welding", Vol I,	II,
Tata	McGraw Hill Publishing Co. ISBN-0 07 451863 1	
5. Elec	ric Vehicles: And the End of ICE age, by Anupam Singh, Adhyyan Books	
Publ	sher, 2019.	
	California and Lan Chaffer Hillston WA differ Manufastering 2D Driveting	f

- 6. Andreas Gebhardt and Jan-Steffen Hötter, "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing" Hanser Publishers, Munich, 2016.
- 7. D. T. Pham and S.S. Dimov, "Rapid Manufacturing" Springer, 2001.

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Test	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		2		2	3		1	2		
CO2	3		2		2				2	2	2	
CO3	2	2			2		2	2		3		2
CO4	3		3	2				3		2		

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech in Mechanical Engineering, Semester II Course Code: MNE2401T03, Course Title: Basic Mechanical Engineering, Category: Program Core Course

	Teaching	Evaluation Scheme							
т	т	P (Hr)			Theory Marks			Practical Marks	
(Hr)	(Hr)		Cr	Exam	Max	Min Mar for Pass	ks sing	Max	Min Marks for Passing
2	0	0	2	CCA	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Prerequisites: Basics of Chemistry and Physics of HSC level

Course Objectives: Purposes of the course are

- 1. To explain the basic concept of engineering thermodynamics and its application
- 2. To get acquainted with vehicle systems.
- 3. To introduce manufacturing processes applying proper method to produce components.
- 4. To be able to select and compare domestic appliances

Cours	Course Outcomes: After successful completion of the course units the student will						
CO1	Apply basic laws of thermodynamics, heat transfer for day-to-day life applications.						
CO2	Understand the basic modes of heat and mass transfer.						
CO3	Illustrate various basic parts and transmission system of a road vehicle						
CO4	Discuss several manufacturing processes and identify the suitable process for various						
	industrial applications						
CO5	Interpret various types of mechanisms and its applications for household usage.						

Unit I	Introduction to Thermodynamics	4 hrs						
Introductio	Introduction To Thermodynamics, Laws of Thermodynamics (Zeroth, First, Second Law), Heat							
Engine, Heat Pump, Refrigerator (Numerical)								
Unit II	Heat Transfer	3 hrs						
Modes of h	eat transfer: conduction, convection and radiation, Fourier's law, Newton's law o	fcooling,						
Stefan Bolt	Stefan Boltzmann's law. (Numerical)							
Unit III	Automobile Engineering	7 hrs						
Introduction to IC Engine, two stroke and Four stroke engines (Petrol, Diesel), Engine Components								
and their sp	becification, Chassis, Steering System, Suspension System, Braking, Fuel, Tyre, G	Clutch,						
Propeller S	Propeller Shaft, Gear Box, Axle. Introduction of Electric and Hybrid Vehicles. Systems and							
subsystems	subsystems of electrical and hybrid vehicles.							
Unit IV	Manufacturing Processes	6 hrs						
Casting, Forging, Metal forming (Drawing, Extrusion, etc.), Sheet metal working, Metal joining, etc.								
Metal cutting processes and machining operations Turning, Milling and Drilling, etc. 3D printing,								
rapid prototyping, IOT.								
Unit V	Components and Mechanism of Household devices	6 hrs						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Springs - Door closure, door locks, etc.; Gears - Printers, etc.; Application of Belt-Pulley/Chain-Sprocket - Photocopier, etc.; Valves - Water tap, etc.; Application of levers - Door latch. Electric/Solar energy - Geyser, Water heater, Electric iron, etc.

Introduction of pump, compressor, Compressors - Refrigerator, Water cooler, AC unit; Pumps -Water pump for overhead tanks, Water filter, Blower - Vacuum cleaner, Kitchen Chimney; Motor -Washing machines

Text Books

1. Agrawal, Basant and Agrawal, C. M., (2008), "Basics of Mechanical Engineering", John Wiley and Sons, USA ,ISBN 13 978-8126518784

2. Rajput, R.K., (2007), "Basic Mechanical Engineering", Laxmi Publications Pvt. Ltd , ISBN-13: 978-8131803592

Reference Books

1. Khurmi, R.S., and Gupta, J. K., "A Textbook of Thermal Engineering", S. Chand & Sons, ISBN 13 9788121913379

2. Incropera, F. P. and Dewitt, D.P., (2007), "Fundamentals of Heat and Mass Transfer, 6th Ed., John Wiley and Sons, USA, ISBN 13: 9780470881453.

3. Groover, Mikell P., (1996), "Fundamentals of Modern Manufacturing: Materials,

Processes, and Systems", Prentice Hall, USA, ISBN-13: 978-0133121827

4. Norton, Robert L., (2009), "Kinematics and Dynamics of Machinery", Tata McGrawHill, ISBN 13: 978-1-269-374507

6. Juvinal, R. C., (1994), "Fundamentals of Machine Component Design", John Wiley and Sons, USA, ISBN-. 13: 978-1118012895

7. Ganeshan, V., (2018), "Internal Combustion Engines", McGraw Hill, ISBN: 9788189928469 8. https://onlinecourses.nptel.ac.in/noc24_me104/preview

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous	Faculty	5	5	5	5	5	25	20
Assessment	Department	5	5	5	5	5	25	
(CCA)		Unit	Test 1 (U	JT1)	Unit Tes	t 2 (UT2)		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

Scheme for Theory Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	03	03								03		03
CO2	03	03									02	03
CO3	03	03			02				02	03		03
CO4	03	03	03								02	03

3: High, 2: Moderate, 1: Low, 0: No Mapping